Datrys ar gyfer x
x=-\frac{\sqrt{5}p}{5}+\sqrt{5}+2
Datrys ar gyfer p
p=\sqrt{5}\left(-x+\sqrt{5}+2\right)
Graff
Rhannu
Copïo i clipfwrdd
p+x\sqrt{5}=5+2\sqrt{5}
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
x\sqrt{5}=5+2\sqrt{5}-p
Tynnu p o'r ddwy ochr.
\sqrt{5}x=-p+2\sqrt{5}+5
Mae'r hafaliad yn y ffurf safonol.
\frac{\sqrt{5}x}{\sqrt{5}}=\frac{-p+2\sqrt{5}+5}{\sqrt{5}}
Rhannu’r ddwy ochr â \sqrt{5}.
x=\frac{-p+2\sqrt{5}+5}{\sqrt{5}}
Mae rhannu â \sqrt{5} yn dad-wneud lluosi â \sqrt{5}.
x=\frac{\sqrt{5}\left(-p+2\sqrt{5}+5\right)}{5}
Rhannwch 5+2\sqrt{5}-p â \sqrt{5}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}