Datrys ar gyfer x
x=4
Graff
Rhannu
Copïo i clipfwrdd
x^{2}-8x+16=0
Rhannu’r ddwy ochr â 5.
a+b=-8 ab=1\times 16=16
I ddatrys yr hafaliad, dylech ffactorio'r ochr chwith drwy grwpio. Yn gyntaf, mae angen ailysgrifennu'r ochr chwith fel x^{2}+ax+bx+16. I ddod o hyd i a a b, gosodwch system i'w datrys.
-1,-16 -2,-8 -4,-4
Gan fod ab yn bositif, mae gan a a b yr un arwydd. Gan fod a+b yn negatif, mae a a b ill dau yn negatif. Rhestrwch bob pâr cyfanrif o'r fath sy'n rhoi'r cynnyrch 16.
-1-16=-17 -2-8=-10 -4-4=-8
Cyfrifo'r swm ar gyfer pob pâr.
a=-4 b=-4
Yr ateb yw'r pâr sy'n rhoi'r swm -8.
\left(x^{2}-4x\right)+\left(-4x+16\right)
Ailysgrifennwch x^{2}-8x+16 fel \left(x^{2}-4x\right)+\left(-4x+16\right).
x\left(x-4\right)-4\left(x-4\right)
Ni ddylech ffactorio x yn y cyntaf a -4 yn yr ail grŵp.
\left(x-4\right)\left(x-4\right)
Ffactoriwch y term cyffredin x-4 allan drwy ddefnyddio'r briodwedd ddosbarthol.
\left(x-4\right)^{2}
Ailysgrifennu fel sgwâr binomial.
x=4
I ddod o hyd i ateb hafaliad, datryswch x-4=0.
5x^{2}-40x+80=0
Mae modd datrys pob hafaliad sydd yn y ffurf ax^{2}+bx+c=0 drwy ddefnyddio'r fformiwla cwadratig: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Mae'r fformiwla cwadratig yn rhoi dau ateb, pan fydd ± yn adio â’r llall pan fydd yn tynnu.
x=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 5\times 80}}{2\times 5}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch 5 am a, -40 am b, a 80 am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-40\right)±\sqrt{1600-4\times 5\times 80}}{2\times 5}
Sgwâr -40.
x=\frac{-\left(-40\right)±\sqrt{1600-20\times 80}}{2\times 5}
Lluoswch -4 â 5.
x=\frac{-\left(-40\right)±\sqrt{1600-1600}}{2\times 5}
Lluoswch -20 â 80.
x=\frac{-\left(-40\right)±\sqrt{0}}{2\times 5}
Adio 1600 at -1600.
x=-\frac{-40}{2\times 5}
Cymryd isradd 0.
x=\frac{40}{2\times 5}
Gwrthwyneb -40 yw 40.
x=\frac{40}{10}
Lluoswch 2 â 5.
x=4
Rhannwch 40 â 10.
5x^{2}-40x+80=0
Mae modd datrys hafaliadau cwadratig fel hwn drwy gwblhau’r sgwâr. Er mwyn cwblhau’r sgwâr, yn gyntaf mae’n rhaid i'r hafaliad fod ar ffurf x^{2}+bx=c.
5x^{2}-40x+80-80=-80
Tynnu 80 o ddwy ochr yr hafaliad.
5x^{2}-40x=-80
Mae tynnu 80 o’i hun yn gadael 0.
\frac{5x^{2}-40x}{5}=-\frac{80}{5}
Rhannu’r ddwy ochr â 5.
x^{2}+\left(-\frac{40}{5}\right)x=-\frac{80}{5}
Mae rhannu â 5 yn dad-wneud lluosi â 5.
x^{2}-8x=-\frac{80}{5}
Rhannwch -40 â 5.
x^{2}-8x=-16
Rhannwch -80 â 5.
x^{2}-8x+\left(-4\right)^{2}=-16+\left(-4\right)^{2}
Rhannwch -8, cyfernod y term x, â 2 i gael -4. Yna ychwanegwch sgwâr -4 at ddwy ochr yr hafaliad. Mae'r cam hwn yn gwneud ochr chwith yr hafaliad yn sgwâr perffaith.
x^{2}-8x+16=-16+16
Sgwâr -4.
x^{2}-8x+16=0
Adio -16 at 16.
\left(x-4\right)^{2}=0
Ffactora x^{2}-8x+16. Yn gyffredinol, pan fydd x^{2}+bx+c yn sgwâr perffaith, mae modd ei ffactora bob amser fel \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{0}
Cymrwch isradd dwy ochr yr hafaliad.
x-4=0 x-4=0
Symleiddio.
x=4 x=4
Adio 4 at ddwy ochr yr hafaliad.
x=4
Mae’r hafaliad wedi’i ddatrys nawr. Mae’r datrysiadau yr un peth.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}