Datrys ar gyfer x
x=4\log_{2}\left(\frac{610}{47}\right)\approx 14.792306323
Datrys ar gyfer x (complex solution)
x=-\frac{i\times 8\pi n_{1}}{\ln(2)}+4\log_{2}\left(\frac{610}{47}\right)
n_{1}\in \mathrm{Z}
Graff
Rhannu
Copïo i clipfwrdd
\frac{47}{610}=0.5^{\frac{x}{4}}
Rhannu’r ddwy ochr â 610.
0.5^{\frac{x}{4}}=\frac{47}{610}
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
0.5^{\frac{1}{4}x}=\frac{47}{610}
Defnyddio rheolau esbonyddion a logarithmau i ddatrys yr hafaliad.
\log(0.5^{\frac{1}{4}x})=\log(\frac{47}{610})
Cymryd logarithm dwy ochr yr hafaliad.
\frac{1}{4}x\log(0.5)=\log(\frac{47}{610})
Logarithm rhif wedi’i godi i bŵer yw’r pŵer wedi’i lluosi â logarithm y rhif.
\frac{1}{4}x=\frac{\log(\frac{47}{610})}{\log(0.5)}
Rhannu’r ddwy ochr â \log(0.5).
\frac{1}{4}x=\log_{0.5}\left(\frac{47}{610}\right)
Gyda’r fformiwla newid-sail \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=-\frac{\frac{\ln(\frac{47}{610})}{\ln(2)}}{\frac{1}{4}}
Lluosi’r ddwy ochr â 4.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}