4 x ( 1 + 48 \% ) ^ { t } = 19
Datrys ar gyfer x
x=\frac{19\times \left(\frac{25}{37}\right)^{t}}{4}
Datrys ar gyfer t (complex solution)
t=\frac{-\ln(x)+\ln(\frac{19}{4})}{\ln(\frac{37}{25})}+\frac{2\pi n_{1}i}{\ln(\frac{37}{25})}
n_{1}\in \mathrm{Z}
x\neq 0
Datrys ar gyfer t
t=\frac{-\ln(x)+\ln(\frac{19}{4})}{\ln(\frac{37}{25})}
x>0
Graff
Rhannu
Copïo i clipfwrdd
4x\left(1+\frac{12}{25}\right)^{t}=19
Lleihau'r ffracsiwn \frac{48}{100} i'r graddau lleiaf posib drwy dynnu a chanslo allan 4.
4x\times \left(\frac{37}{25}\right)^{t}=19
Adio 1 a \frac{12}{25} i gael \frac{37}{25}.
4\times \left(\frac{37}{25}\right)^{t}x=19
Mae'r hafaliad yn y ffurf safonol.
\frac{4\times \left(\frac{37}{25}\right)^{t}x}{4\times \left(\frac{37}{25}\right)^{t}}=\frac{19}{4\times \left(\frac{37}{25}\right)^{t}}
Rhannu’r ddwy ochr â 4\times \left(\frac{37}{25}\right)^{t}.
x=\frac{19}{4\times \left(\frac{37}{25}\right)^{t}}
Mae rhannu â 4\times \left(\frac{37}{25}\right)^{t} yn dad-wneud lluosi â 4\times \left(\frac{37}{25}\right)^{t}.
x=\frac{19\times \left(\frac{25}{37}\right)^{t}}{4}
Rhannwch 19 â 4\times \left(\frac{37}{25}\right)^{t}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}