Enrhifo
q\left(4p+3q\right)
Ehangu
4pq+3q^{2}
Rhannu
Copïo i clipfwrdd
4\left(p^{2}+2pq+q^{2}\right)-\left(2p+q\right)^{2}
Defnyddio'r theorem binomaidd \left(a+b\right)^{2}=a^{2}+2ab+b^{2} i ehangu'r \left(p+q\right)^{2}.
4p^{2}+8pq+4q^{2}-\left(2p+q\right)^{2}
Defnyddio’r briodwedd ddosbarthu i luosi 4 â p^{2}+2pq+q^{2}.
4p^{2}+8pq+4q^{2}-\left(4p^{2}+4pq+q^{2}\right)
Defnyddio'r theorem binomaidd \left(a+b\right)^{2}=a^{2}+2ab+b^{2} i ehangu'r \left(2p+q\right)^{2}.
4p^{2}+8pq+4q^{2}-4p^{2}-4pq-q^{2}
I ddod o hyd i wrthwyneb 4p^{2}+4pq+q^{2}, dewch o hyd i wrthwyneb pob term.
8pq+4q^{2}-4pq-q^{2}
Cyfuno 4p^{2} a -4p^{2} i gael 0.
4pq+4q^{2}-q^{2}
Cyfuno 8pq a -4pq i gael 4pq.
4pq+3q^{2}
Cyfuno 4q^{2} a -q^{2} i gael 3q^{2}.
4\left(p^{2}+2pq+q^{2}\right)-\left(2p+q\right)^{2}
Defnyddio'r theorem binomaidd \left(a+b\right)^{2}=a^{2}+2ab+b^{2} i ehangu'r \left(p+q\right)^{2}.
4p^{2}+8pq+4q^{2}-\left(2p+q\right)^{2}
Defnyddio’r briodwedd ddosbarthu i luosi 4 â p^{2}+2pq+q^{2}.
4p^{2}+8pq+4q^{2}-\left(4p^{2}+4pq+q^{2}\right)
Defnyddio'r theorem binomaidd \left(a+b\right)^{2}=a^{2}+2ab+b^{2} i ehangu'r \left(2p+q\right)^{2}.
4p^{2}+8pq+4q^{2}-4p^{2}-4pq-q^{2}
I ddod o hyd i wrthwyneb 4p^{2}+4pq+q^{2}, dewch o hyd i wrthwyneb pob term.
8pq+4q^{2}-4pq-q^{2}
Cyfuno 4p^{2} a -4p^{2} i gael 0.
4pq+4q^{2}-q^{2}
Cyfuno 8pq a -4pq i gael 4pq.
4pq+3q^{2}
Cyfuno 4q^{2} a -q^{2} i gael 3q^{2}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}