Datrys ar gyfer x
x = \frac{3 \sqrt{15}}{2} \approx 5.809475019
x = -\frac{3 \sqrt{15}}{2} \approx -5.809475019
Graff
Rhannu
Copïo i clipfwrdd
36=\frac{9}{4}+x^{2}
Cyfrifo \frac{3}{2} i bŵer 2 a chael \frac{9}{4}.
\frac{9}{4}+x^{2}=36
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
x^{2}=36-\frac{9}{4}
Tynnu \frac{9}{4} o'r ddwy ochr.
x^{2}=\frac{135}{4}
Tynnu \frac{9}{4} o 36 i gael \frac{135}{4}.
x=\frac{3\sqrt{15}}{2} x=-\frac{3\sqrt{15}}{2}
Cymryd isradd dwy ochr yr hafaliad.
36=\frac{9}{4}+x^{2}
Cyfrifo \frac{3}{2} i bŵer 2 a chael \frac{9}{4}.
\frac{9}{4}+x^{2}=36
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\frac{9}{4}+x^{2}-36=0
Tynnu 36 o'r ddwy ochr.
-\frac{135}{4}+x^{2}=0
Tynnu 36 o \frac{9}{4} i gael -\frac{135}{4}.
x^{2}-\frac{135}{4}=0
Ar gyfer hafaliadau cwadratig fel yr un hwn, gyda therm x^{2} ond dim term x, mae modd eu datrys drwy ddefnyddio'r fformiwla cwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}., unwaith y cânt eu rhoi ar ffurf safonol: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{135}{4}\right)}}{2}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch 1 am a, 0 am b, a -\frac{135}{4} am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{135}{4}\right)}}{2}
Sgwâr 0.
x=\frac{0±\sqrt{135}}{2}
Lluoswch -4 â -\frac{135}{4}.
x=\frac{0±3\sqrt{15}}{2}
Cymryd isradd 135.
x=\frac{3\sqrt{15}}{2}
Datryswch yr hafaliad x=\frac{0±3\sqrt{15}}{2} pan fydd ± yn plws.
x=-\frac{3\sqrt{15}}{2}
Datryswch yr hafaliad x=\frac{0±3\sqrt{15}}{2} pan fydd ± yn minws.
x=\frac{3\sqrt{15}}{2} x=-\frac{3\sqrt{15}}{2}
Mae’r hafaliad wedi’i ddatrys nawr.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}