Neidio i'r prif gynnwys
Datrys ar gyfer x
Tick mark Image
Graff

Problemau tebyg o chwiliad gwe

Rhannu

3x^{2}-12x+6=0
Mae modd datrys pob hafaliad sydd yn y ffurf ax^{2}+bx+c=0 drwy ddefnyddio'r fformiwla cwadratig: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Mae'r fformiwla cwadratig yn rhoi dau ateb, pan fydd ± yn adio â’r llall pan fydd yn tynnu.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 3\times 6}}{2\times 3}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch 3 am a, -12 am b, a 6 am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 3\times 6}}{2\times 3}
Sgwâr -12.
x=\frac{-\left(-12\right)±\sqrt{144-12\times 6}}{2\times 3}
Lluoswch -4 â 3.
x=\frac{-\left(-12\right)±\sqrt{144-72}}{2\times 3}
Lluoswch -12 â 6.
x=\frac{-\left(-12\right)±\sqrt{72}}{2\times 3}
Adio 144 at -72.
x=\frac{-\left(-12\right)±6\sqrt{2}}{2\times 3}
Cymryd isradd 72.
x=\frac{12±6\sqrt{2}}{2\times 3}
Gwrthwyneb -12 yw 12.
x=\frac{12±6\sqrt{2}}{6}
Lluoswch 2 â 3.
x=\frac{6\sqrt{2}+12}{6}
Datryswch yr hafaliad x=\frac{12±6\sqrt{2}}{6} pan fydd ± yn plws. Adio 12 at 6\sqrt{2}.
x=\sqrt{2}+2
Rhannwch 12+6\sqrt{2} â 6.
x=\frac{12-6\sqrt{2}}{6}
Datryswch yr hafaliad x=\frac{12±6\sqrt{2}}{6} pan fydd ± yn minws. Tynnu 6\sqrt{2} o 12.
x=2-\sqrt{2}
Rhannwch 12-6\sqrt{2} â 6.
x=\sqrt{2}+2 x=2-\sqrt{2}
Mae’r hafaliad wedi’i ddatrys nawr.
3x^{2}-12x+6=0
Mae modd datrys hafaliadau cwadratig fel hwn drwy gwblhau’r sgwâr. Er mwyn cwblhau’r sgwâr, yn gyntaf mae’n rhaid i'r hafaliad fod ar ffurf x^{2}+bx=c.
3x^{2}-12x+6-6=-6
Tynnu 6 o ddwy ochr yr hafaliad.
3x^{2}-12x=-6
Mae tynnu 6 o’i hun yn gadael 0.
\frac{3x^{2}-12x}{3}=-\frac{6}{3}
Rhannu’r ddwy ochr â 3.
x^{2}+\left(-\frac{12}{3}\right)x=-\frac{6}{3}
Mae rhannu â 3 yn dad-wneud lluosi â 3.
x^{2}-4x=-\frac{6}{3}
Rhannwch -12 â 3.
x^{2}-4x=-2
Rhannwch -6 â 3.
x^{2}-4x+\left(-2\right)^{2}=-2+\left(-2\right)^{2}
Rhannwch -4, cyfernod y term x, â 2 i gael -2. Yna ychwanegwch sgwâr -2 at ddwy ochr yr hafaliad. Mae'r cam hwn yn gwneud ochr chwith yr hafaliad yn sgwâr perffaith.
x^{2}-4x+4=-2+4
Sgwâr -2.
x^{2}-4x+4=2
Adio -2 at 4.
\left(x-2\right)^{2}=2
Ffactora x^{2}-4x+4. Yn gyffredinol, pan fydd x^{2}+bx+c yn sgwâr perffaith, mae modd ei ffactora bob amser fel \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{2}
Cymrwch isradd dwy ochr yr hafaliad.
x-2=\sqrt{2} x-2=-\sqrt{2}
Symleiddio.
x=\sqrt{2}+2 x=2-\sqrt{2}
Adio 2 at ddwy ochr yr hafaliad.