Neidio i'r prif gynnwys
Enrhifo
Tick mark Image
Ffactor
Tick mark Image

Rhannu

\frac{3\sqrt{\frac{6+2}{3}}}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Lluosi 2 a 3 i gael 6.
\frac{3\sqrt{\frac{8}{3}}}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Adio 6 a 2 i gael 8.
\frac{3\times \frac{\sqrt{8}}{\sqrt{3}}}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Ailysgrifennu ail isradd y rhaniad \sqrt{\frac{8}{3}} fel rhaniad ail israddau \frac{\sqrt{8}}{\sqrt{3}}.
\frac{3\times \frac{2\sqrt{2}}{\sqrt{3}}}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Ffactora 8=2^{2}\times 2. Ailysgrifennu ail isradd y lluoswm \sqrt{2^{2}\times 2} fel lluoswm ail israddau \sqrt{2^{2}}\sqrt{2}. Cymryd isradd 2^{2}.
\frac{3\times \frac{2\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Mae'n rhesymoli enwadur \frac{2\sqrt{2}}{\sqrt{3}} drwy luosi'r rhifiadur a'r enwadur â \sqrt{3}.
\frac{3\times \frac{2\sqrt{2}\sqrt{3}}{3}}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Sgwâr \sqrt{3} yw 3.
\frac{3\times \frac{2\sqrt{6}}{3}}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
I luosi \sqrt{2} a \sqrt{3}, dylid lluosi'r rhifau dan yr ail isradd.
\frac{2\sqrt{6}}{2}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Canslo 3 a 3.
\sqrt{6}\sqrt{\frac{2}{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Canslo 2 a 2.
\sqrt{6}\times \frac{\sqrt{2}}{\sqrt{5}}\left(-\frac{1}{8}\right)\sqrt{15}
Ailysgrifennu ail isradd y rhaniad \sqrt{\frac{2}{5}} fel rhaniad ail israddau \frac{\sqrt{2}}{\sqrt{5}}.
\sqrt{6}\times \frac{\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\left(-\frac{1}{8}\right)\sqrt{15}
Mae'n rhesymoli enwadur \frac{\sqrt{2}}{\sqrt{5}} drwy luosi'r rhifiadur a'r enwadur â \sqrt{5}.
\sqrt{6}\times \frac{\sqrt{2}\sqrt{5}}{5}\left(-\frac{1}{8}\right)\sqrt{15}
Sgwâr \sqrt{5} yw 5.
\sqrt{6}\times \frac{\sqrt{10}}{5}\left(-\frac{1}{8}\right)\sqrt{15}
I luosi \sqrt{2} a \sqrt{5}, dylid lluosi'r rhifau dan yr ail isradd.
\frac{\sqrt{6}\sqrt{10}}{5}\left(-\frac{1}{8}\right)\sqrt{15}
Mynegwch \sqrt{6}\times \frac{\sqrt{10}}{5} fel ffracsiwn unigol.
\frac{-\sqrt{6}\sqrt{10}}{5\times 8}\sqrt{15}
Lluoswch \frac{\sqrt{6}\sqrt{10}}{5} â -\frac{1}{8} drwy luosi'r rhifiadur â’r rhifiadur a'r enwadur â’r enwadur.
\frac{-\sqrt{6}\sqrt{10}\sqrt{15}}{5\times 8}
Mynegwch \frac{-\sqrt{6}\sqrt{10}}{5\times 8}\sqrt{15} fel ffracsiwn unigol.
\frac{-\sqrt{60}\sqrt{15}}{5\times 8}
I luosi \sqrt{6} a \sqrt{10}, dylid lluosi'r rhifau dan yr ail isradd.
\frac{-\sqrt{15}\sqrt{4}\sqrt{15}}{5\times 8}
Ffactora 60=15\times 4. Ailysgrifennu ail isradd y lluoswm \sqrt{15\times 4} fel lluoswm ail israddau \sqrt{15}\sqrt{4}.
\frac{-15\sqrt{4}}{5\times 8}
Lluosi \sqrt{15} a \sqrt{15} i gael 15.
\frac{-15\sqrt{4}}{40}
Lluosi 5 a 8 i gael 40.
\frac{-15\times 2}{40}
Cyfrifo ail isradd 4 a chael 2.
\frac{-30}{40}
Lluosi -15 a 2 i gael -30.
-\frac{3}{4}
Lleihau'r ffracsiwn \frac{-30}{40} i'r graddau lleiaf posib drwy dynnu a chanslo allan 10.