Datrys ar gyfer x
x=\log_{3}\left(\frac{68574961}{10000}\right)+3\approx 11.040231977
Datrys ar gyfer x (complex solution)
x=\frac{2\pi n_{1}i}{\ln(3)}+\log_{3}\left(\frac{68574961}{10000}\right)+3
n_{1}\in \mathrm{Z}
Graff
Rhannu
Copïo i clipfwrdd
3^{x+1}=\frac{5554571841}{10000}
Defnyddio rheolau esbonyddion a logarithmau i ddatrys yr hafaliad.
\log(3^{x+1})=\log(\frac{5554571841}{10000})
Cymryd logarithm dwy ochr yr hafaliad.
\left(x+1\right)\log(3)=\log(\frac{5554571841}{10000})
Logarithm rhif wedi’i godi i bŵer yw’r pŵer wedi’i lluosi â logarithm y rhif.
x+1=\frac{\log(\frac{5554571841}{10000})}{\log(3)}
Rhannu’r ddwy ochr â \log(3).
x+1=\log_{3}\left(\frac{5554571841}{10000}\right)
Gyda’r fformiwla newid-sail \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=\frac{\ln(\frac{5554571841}{10000})}{\ln(3)}-1
Tynnu 1 o ddwy ochr yr hafaliad.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}