Datrys ar gyfer k (complex solution)
\left\{\begin{matrix}\\k=\frac{750}{7}\approx 107.142857143\text{, }&\text{unconditionally}\\k\in \mathrm{C}\text{, }&m=0\end{matrix}\right.
Datrys ar gyfer m (complex solution)
\left\{\begin{matrix}\\m=0\text{, }&\text{unconditionally}\\m\in \mathrm{C}\text{, }&k=\frac{750}{7}\end{matrix}\right.
Datrys ar gyfer k
\left\{\begin{matrix}\\k=\frac{750}{7}\approx 107.142857143\text{, }&\text{unconditionally}\\k\in \mathrm{R}\text{, }&m=0\end{matrix}\right.
Datrys ar gyfer m
\left\{\begin{matrix}\\m=0\text{, }&\text{unconditionally}\\m\in \mathrm{R}\text{, }&k=\frac{750}{7}\end{matrix}\right.
Rhannu
Copïo i clipfwrdd
\frac{14m}{5}k=300m
Mae'r hafaliad yn y ffurf safonol.
\frac{5\times \frac{14m}{5}k}{14m}=\frac{5\times 300m}{14m}
Rhannu’r ddwy ochr â 2.8m.
k=\frac{5\times 300m}{14m}
Mae rhannu â 2.8m yn dad-wneud lluosi â 2.8m.
k=\frac{750}{7}
Rhannwch 300m â 2.8m.
2.8km-300m=0
Tynnu 300m o'r ddwy ochr.
\left(2.8k-300\right)m=0
Cyfuno pob term sy'n cynnwys m.
\left(\frac{14k}{5}-300\right)m=0
Mae'r hafaliad yn y ffurf safonol.
m=0
Rhannwch 0 â -300+2.8k.
\frac{14m}{5}k=300m
Mae'r hafaliad yn y ffurf safonol.
\frac{5\times \frac{14m}{5}k}{14m}=\frac{5\times 300m}{14m}
Rhannu’r ddwy ochr â 2.8m.
k=\frac{5\times 300m}{14m}
Mae rhannu â 2.8m yn dad-wneud lluosi â 2.8m.
k=\frac{750}{7}
Rhannwch 300m â 2.8m.
2.8km-300m=0
Tynnu 300m o'r ddwy ochr.
\left(2.8k-300\right)m=0
Cyfuno pob term sy'n cynnwys m.
\left(\frac{14k}{5}-300\right)m=0
Mae'r hafaliad yn y ffurf safonol.
m=0
Rhannwch 0 â -300+2.8k.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}