Enrhifo
\frac{259ot\sigma _{2}m^{2}}{15000}
Gwahaniaethu w.r.t. o
\frac{259t\sigma _{2}m^{2}}{15000}
Cwis
Algebra
5 problemau tebyg i:
2.59 \times 10 ^ { - 2 } mot \sigma _ { 2 } \times \frac { 2 m } { 3 }
Rhannu
Copïo i clipfwrdd
2.59\times \frac{1}{100}mot\sigma _{2}\times \frac{2m}{3}
Cyfrifo 10 i bŵer -2 a chael \frac{1}{100}.
\frac{259}{10000}mot\sigma _{2}\times \frac{2m}{3}
Lluosi 2.59 a \frac{1}{100} i gael \frac{259}{10000}.
\frac{259\times 2m}{10000\times 3}mot\sigma _{2}
Lluoswch \frac{259}{10000} â \frac{2m}{3} drwy luosi'r rhifiadur â’r rhifiadur a'r enwadur â’r enwadur.
\frac{259m}{3\times 5000}mot\sigma _{2}
Canslo 2 yn y rhifiadur a'r enwadur.
\frac{259m}{15000}mot\sigma _{2}
Lluosi 3 a 5000 i gael 15000.
\frac{259mm}{15000}ot\sigma _{2}
Mynegwch \frac{259m}{15000}m fel ffracsiwn unigol.
\frac{259mmo}{15000}t\sigma _{2}
Mynegwch \frac{259mm}{15000}o fel ffracsiwn unigol.
\frac{259mmot}{15000}\sigma _{2}
Mynegwch \frac{259mmo}{15000}t fel ffracsiwn unigol.
\frac{259mmot\sigma _{2}}{15000}
Mynegwch \frac{259mmot}{15000}\sigma _{2} fel ffracsiwn unigol.
\frac{259m^{2}ot\sigma _{2}}{15000}
Lluosi m a m i gael m^{2}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}