Datrys ar gyfer x
x=-\frac{571y}{214}-\frac{7197000}{107}
Datrys ar gyfer y
y=\frac{-214x-14394000}{571}
Graff
Rhannu
Copïo i clipfwrdd
2\times \frac{0.0891+1.07\times \frac{1}{1000000}x}{5.71\times 10^{-6}}+y=6000
Cyfrifo 10 i bŵer -6 a chael \frac{1}{1000000}.
2\times \frac{0.0891+\frac{107}{100000000}x}{5.71\times 10^{-6}}+y=6000
Lluosi 1.07 a \frac{1}{1000000} i gael \frac{107}{100000000}.
2\times \frac{0.0891+\frac{107}{100000000}x}{5.71\times \frac{1}{1000000}}+y=6000
Cyfrifo 10 i bŵer -6 a chael \frac{1}{1000000}.
2\times \frac{0.0891+\frac{107}{100000000}x}{\frac{571}{100000000}}+y=6000
Lluosi 5.71 a \frac{1}{1000000} i gael \frac{571}{100000000}.
2\left(\frac{0.0891}{\frac{571}{100000000}}+\frac{\frac{107}{100000000}x}{\frac{571}{100000000}}\right)+y=6000
Rhannu pob term 0.0891+\frac{107}{100000000}x â \frac{571}{100000000} i gael \frac{0.0891}{\frac{571}{100000000}}+\frac{\frac{107}{100000000}x}{\frac{571}{100000000}}.
2\left(0.0891\times \frac{100000000}{571}+\frac{\frac{107}{100000000}x}{\frac{571}{100000000}}\right)+y=6000
Rhannwch 0.0891 â \frac{571}{100000000} drwy luosi 0.0891 â chilydd \frac{571}{100000000}.
2\left(\frac{8910000}{571}+\frac{\frac{107}{100000000}x}{\frac{571}{100000000}}\right)+y=6000
Lluosi 0.0891 a \frac{100000000}{571} i gael \frac{8910000}{571}.
2\left(\frac{8910000}{571}+\frac{107}{571}x\right)+y=6000
Rhannu \frac{107}{100000000}x â \frac{571}{100000000} i gael \frac{107}{571}x.
\frac{17820000}{571}+\frac{214}{571}x+y=6000
Defnyddio’r briodwedd ddosbarthu i luosi 2 â \frac{8910000}{571}+\frac{107}{571}x.
\frac{214}{571}x+y=6000-\frac{17820000}{571}
Tynnu \frac{17820000}{571} o'r ddwy ochr.
\frac{214}{571}x+y=-\frac{14394000}{571}
Tynnu \frac{17820000}{571} o 6000 i gael -\frac{14394000}{571}.
\frac{214}{571}x=-\frac{14394000}{571}-y
Tynnu y o'r ddwy ochr.
\frac{214}{571}x=-y-\frac{14394000}{571}
Mae'r hafaliad yn y ffurf safonol.
\frac{\frac{214}{571}x}{\frac{214}{571}}=\frac{-y-\frac{14394000}{571}}{\frac{214}{571}}
Rhannu dwy ochr hafaliad â \frac{214}{571}, sydd yr un peth â lluosi’r ddwy ochr â chilydd y ffracsiwn.
x=\frac{-y-\frac{14394000}{571}}{\frac{214}{571}}
Mae rhannu â \frac{214}{571} yn dad-wneud lluosi â \frac{214}{571}.
x=-\frac{571y}{214}-\frac{7197000}{107}
Rhannwch -\frac{14394000}{571}-y â \frac{214}{571} drwy luosi -\frac{14394000}{571}-y â chilydd \frac{214}{571}.
2\times \frac{0.0891+1.07\times \frac{1}{1000000}x}{5.71\times 10^{-6}}+y=6000
Cyfrifo 10 i bŵer -6 a chael \frac{1}{1000000}.
2\times \frac{0.0891+\frac{107}{100000000}x}{5.71\times 10^{-6}}+y=6000
Lluosi 1.07 a \frac{1}{1000000} i gael \frac{107}{100000000}.
2\times \frac{0.0891+\frac{107}{100000000}x}{5.71\times \frac{1}{1000000}}+y=6000
Cyfrifo 10 i bŵer -6 a chael \frac{1}{1000000}.
2\times \frac{0.0891+\frac{107}{100000000}x}{\frac{571}{100000000}}+y=6000
Lluosi 5.71 a \frac{1}{1000000} i gael \frac{571}{100000000}.
2\left(\frac{0.0891}{\frac{571}{100000000}}+\frac{\frac{107}{100000000}x}{\frac{571}{100000000}}\right)+y=6000
Rhannu pob term 0.0891+\frac{107}{100000000}x â \frac{571}{100000000} i gael \frac{0.0891}{\frac{571}{100000000}}+\frac{\frac{107}{100000000}x}{\frac{571}{100000000}}.
2\left(0.0891\times \frac{100000000}{571}+\frac{\frac{107}{100000000}x}{\frac{571}{100000000}}\right)+y=6000
Rhannwch 0.0891 â \frac{571}{100000000} drwy luosi 0.0891 â chilydd \frac{571}{100000000}.
2\left(\frac{8910000}{571}+\frac{\frac{107}{100000000}x}{\frac{571}{100000000}}\right)+y=6000
Lluosi 0.0891 a \frac{100000000}{571} i gael \frac{8910000}{571}.
2\left(\frac{8910000}{571}+\frac{107}{571}x\right)+y=6000
Rhannu \frac{107}{100000000}x â \frac{571}{100000000} i gael \frac{107}{571}x.
\frac{17820000}{571}+\frac{214}{571}x+y=6000
Defnyddio’r briodwedd ddosbarthu i luosi 2 â \frac{8910000}{571}+\frac{107}{571}x.
\frac{214}{571}x+y=6000-\frac{17820000}{571}
Tynnu \frac{17820000}{571} o'r ddwy ochr.
\frac{214}{571}x+y=-\frac{14394000}{571}
Tynnu \frac{17820000}{571} o 6000 i gael -\frac{14394000}{571}.
y=-\frac{14394000}{571}-\frac{214}{571}x
Tynnu \frac{214}{571}x o'r ddwy ochr.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}