Neidio i'r prif gynnwys
Datrys ar gyfer x
Tick mark Image
Graff

Problemau tebyg o chwiliad gwe

Rhannu

\left(2x\right)^{2}=\left(\sqrt{4x+24}\right)^{2}
Sgwariwch ddwy ochr yr hafaliad.
2^{2}x^{2}=\left(\sqrt{4x+24}\right)^{2}
Ehangu \left(2x\right)^{2}.
4x^{2}=\left(\sqrt{4x+24}\right)^{2}
Cyfrifo 2 i bŵer 2 a chael 4.
4x^{2}=4x+24
Cyfrifo \sqrt{4x+24} i bŵer 2 a chael 4x+24.
4x^{2}-4x=24
Tynnu 4x o'r ddwy ochr.
4x^{2}-4x-24=0
Tynnu 24 o'r ddwy ochr.
x^{2}-x-6=0
Rhannu’r ddwy ochr â 4.
a+b=-1 ab=1\left(-6\right)=-6
I ddatrys yr hafaliad, dylech ffactorio'r ochr chwith drwy grwpio. Yn gyntaf, mae angen ailysgrifennu'r ochr chwith fel x^{2}+ax+bx-6. I ddod o hyd i a a b, gosodwch system i'w datrys.
1,-6 2,-3
Gan fod ab yn negatif, mae gan a a b yr arwyddion croes. Gan fod a+b yn negatif, mae gan y rhif negatif werth absoliwt mwy na'r positif. Rhestrwch bob pâr cyfanrif o'r fath sy'n rhoi'r cynnyrch -6.
1-6=-5 2-3=-1
Cyfrifo'r swm ar gyfer pob pâr.
a=-3 b=2
Yr ateb yw'r pâr sy'n rhoi'r swm -1.
\left(x^{2}-3x\right)+\left(2x-6\right)
Ailysgrifennwch x^{2}-x-6 fel \left(x^{2}-3x\right)+\left(2x-6\right).
x\left(x-3\right)+2\left(x-3\right)
Ni ddylech ffactorio x yn y cyntaf a 2 yn yr ail grŵp.
\left(x-3\right)\left(x+2\right)
Ffactoriwch y term cyffredin x-3 allan drwy ddefnyddio'r briodwedd ddosbarthol.
x=3 x=-2
I ddod o hyd i atebion hafaliad, datryswch x-3=0 a x+2=0.
2\times 3=\sqrt{4\times 3+24}
Amnewid 3 am x yn yr hafaliad 2x=\sqrt{4x+24}.
6=6
Symleiddio. Mae'r gwerth x=3 yn bodloni'r hafaliad.
2\left(-2\right)=\sqrt{4\left(-2\right)+24}
Amnewid -2 am x yn yr hafaliad 2x=\sqrt{4x+24}.
-4=4
Symleiddio. Dydy'r gwerth x=-2 ddim yn bodloni'r hafaliad oherwydd mae gan yr ochr chwith a'r ochr dde arwyddion dirgroes.
x=3
Mae gan yr hafaliad 2x=\sqrt{4x+24} ateb unigryw.