Datrys ar gyfer a
a=\frac{3nx}{4}-\frac{3x}{4}+\frac{35}{n}
n\neq 0
Datrys ar gyfer n (complex solution)
\left\{\begin{matrix}n=-\frac{\sqrt{9x^{2}+24ax-1680x+16a^{2}}-3x-4a}{6x}\text{; }n=\frac{\sqrt{9x^{2}+24ax-1680x+16a^{2}}+3x+4a}{6x}\text{, }&x\neq 0\\n=\frac{35}{a}\text{, }&x=0\text{ and }a\neq 0\end{matrix}\right.
Datrys ar gyfer n
\left\{\begin{matrix}n=-\frac{\sqrt{9x^{2}+24ax-1680x+16a^{2}}-3x-4a}{6x}\text{; }n=\frac{\sqrt{9x^{2}+24ax-1680x+16a^{2}}+3x+4a}{6x}\text{, }&\left(x\neq 0\text{ and }a\geq -\frac{3x}{4}+\sqrt{105x}\right)\text{ or }\left(x\neq 0\text{ and }a\leq -\frac{3x}{4}-\sqrt{105x}\right)\text{ or }x<0\\n=\frac{35}{a}\text{, }&x=0\text{ and }a\neq 0\end{matrix}\right.
Graff
Rhannu
Copïo i clipfwrdd
4an+n\left(n-1\right)x\left(-3\right)=140
Lluoswch ddwy ochr yr hafaliad â 2.
4an+\left(n^{2}-n\right)x\left(-3\right)=140
Defnyddio’r briodwedd ddosbarthu i luosi n â n-1.
4an+\left(n^{2}x-nx\right)\left(-3\right)=140
Defnyddio’r briodwedd ddosbarthu i luosi n^{2}-n â x.
4an-3n^{2}x+3nx=140
Defnyddio’r briodwedd ddosbarthu i luosi n^{2}x-nx â -3.
4an+3nx=140+3n^{2}x
Ychwanegu 3n^{2}x at y ddwy ochr.
4an=140+3n^{2}x-3nx
Tynnu 3nx o'r ddwy ochr.
4na=3xn^{2}-3nx+140
Mae'r hafaliad yn y ffurf safonol.
\frac{4na}{4n}=\frac{3xn^{2}-3nx+140}{4n}
Rhannu’r ddwy ochr â 4n.
a=\frac{3xn^{2}-3nx+140}{4n}
Mae rhannu â 4n yn dad-wneud lluosi â 4n.
a=\frac{3nx}{4}-\frac{3x}{4}+\frac{35}{n}
Rhannwch 140+3n^{2}x-3nx â 4n.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}