Enrhifo
\frac{6\sqrt{5}}{5}\approx 2.683281573
Rhannu
Copïo i clipfwrdd
\frac{2\sqrt{3}}{\frac{\sqrt{7}}{\sqrt{3}}}\sqrt{\frac{7}{5}}
Ailysgrifennu ail isradd y rhaniad \sqrt{\frac{7}{3}} fel rhaniad ail israddau \frac{\sqrt{7}}{\sqrt{3}}.
\frac{2\sqrt{3}}{\frac{\sqrt{7}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}\sqrt{\frac{7}{5}}
Mae'n rhesymoli enwadur \frac{\sqrt{7}}{\sqrt{3}} drwy luosi'r rhifiadur a'r enwadur â \sqrt{3}.
\frac{2\sqrt{3}}{\frac{\sqrt{7}\sqrt{3}}{3}}\sqrt{\frac{7}{5}}
Sgwâr \sqrt{3} yw 3.
\frac{2\sqrt{3}}{\frac{\sqrt{21}}{3}}\sqrt{\frac{7}{5}}
I luosi \sqrt{7} a \sqrt{3}, dylid lluosi'r rhifau dan yr ail isradd.
\frac{2\sqrt{3}\times 3}{\sqrt{21}}\sqrt{\frac{7}{5}}
Rhannwch 2\sqrt{3} â \frac{\sqrt{21}}{3} drwy luosi 2\sqrt{3} â chilydd \frac{\sqrt{21}}{3}.
\frac{2\sqrt{3}\times 3\sqrt{21}}{\left(\sqrt{21}\right)^{2}}\sqrt{\frac{7}{5}}
Mae'n rhesymoli enwadur \frac{2\sqrt{3}\times 3}{\sqrt{21}} drwy luosi'r rhifiadur a'r enwadur â \sqrt{21}.
\frac{2\sqrt{3}\times 3\sqrt{21}}{21}\sqrt{\frac{7}{5}}
Sgwâr \sqrt{21} yw 21.
\frac{6\sqrt{3}\sqrt{21}}{21}\sqrt{\frac{7}{5}}
Lluosi 2 a 3 i gael 6.
\frac{6\sqrt{3}\sqrt{3}\sqrt{7}}{21}\sqrt{\frac{7}{5}}
Ffactora 21=3\times 7. Ailysgrifennu ail isradd y lluoswm \sqrt{3\times 7} fel lluoswm ail israddau \sqrt{3}\sqrt{7}.
\frac{6\times 3\sqrt{7}}{21}\sqrt{\frac{7}{5}}
Lluosi \sqrt{3} a \sqrt{3} i gael 3.
\frac{18\sqrt{7}}{21}\sqrt{\frac{7}{5}}
Lluosi 6 a 3 i gael 18.
\frac{6}{7}\sqrt{7}\sqrt{\frac{7}{5}}
Rhannu 18\sqrt{7} â 21 i gael \frac{6}{7}\sqrt{7}.
\frac{6}{7}\sqrt{7}\times \frac{\sqrt{7}}{\sqrt{5}}
Ailysgrifennu ail isradd y rhaniad \sqrt{\frac{7}{5}} fel rhaniad ail israddau \frac{\sqrt{7}}{\sqrt{5}}.
\frac{6}{7}\sqrt{7}\times \frac{\sqrt{7}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Mae'n rhesymoli enwadur \frac{\sqrt{7}}{\sqrt{5}} drwy luosi'r rhifiadur a'r enwadur â \sqrt{5}.
\frac{6}{7}\sqrt{7}\times \frac{\sqrt{7}\sqrt{5}}{5}
Sgwâr \sqrt{5} yw 5.
\frac{6}{7}\sqrt{7}\times \frac{\sqrt{35}}{5}
I luosi \sqrt{7} a \sqrt{5}, dylid lluosi'r rhifau dan yr ail isradd.
\frac{6\sqrt{35}}{7\times 5}\sqrt{7}
Lluoswch \frac{6}{7} â \frac{\sqrt{35}}{5} drwy luosi'r rhifiadur â’r rhifiadur a'r enwadur â’r enwadur.
\frac{6\sqrt{35}}{35}\sqrt{7}
Lluosi 7 a 5 i gael 35.
\frac{6\sqrt{35}\sqrt{7}}{35}
Mynegwch \frac{6\sqrt{35}}{35}\sqrt{7} fel ffracsiwn unigol.
\frac{6\sqrt{7}\sqrt{5}\sqrt{7}}{35}
Ffactora 35=7\times 5. Ailysgrifennu ail isradd y lluoswm \sqrt{7\times 5} fel lluoswm ail israddau \sqrt{7}\sqrt{5}.
\frac{6\times 7\sqrt{5}}{35}
Lluosi \sqrt{7} a \sqrt{7} i gael 7.
\frac{42\sqrt{5}}{35}
Lluosi 6 a 7 i gael 42.
\frac{6}{5}\sqrt{5}
Rhannu 42\sqrt{5} â 35 i gael \frac{6}{5}\sqrt{5}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}