Datrys ar gyfer V
\left\{\begin{matrix}V=0\text{, }&R_{1}\neq -21\Omega _{2}\\V\in \mathrm{R}\text{, }&R_{1}=\frac{1127\Omega _{2}}{9}\text{ and }\Omega _{2}\neq 0\end{matrix}\right.
Datrys ar gyfer R_1
\left\{\begin{matrix}R_{1}=\frac{1127\Omega _{2}}{9}\text{, }&\Omega _{2}\neq 0\\R_{1}\neq -21\Omega _{2}\text{, }&V=0\end{matrix}\right.
Rhannu
Copïo i clipfwrdd
161V\left(R_{1}+21\Omega _{2}\right)=188VR_{1}
Lluoswch ddwy ochr yr hafaliad â R_{1}+21\Omega _{2}.
161VR_{1}+3381V\Omega _{2}=188VR_{1}
Defnyddio’r briodwedd ddosbarthu i luosi 161V â R_{1}+21\Omega _{2}.
161VR_{1}+3381V\Omega _{2}-188VR_{1}=0
Tynnu 188VR_{1} o'r ddwy ochr.
-27VR_{1}+3381V\Omega _{2}=0
Cyfuno 161VR_{1} a -188VR_{1} i gael -27VR_{1}.
\left(-27R_{1}+3381\Omega _{2}\right)V=0
Cyfuno pob term sy'n cynnwys V.
\left(3381\Omega _{2}-27R_{1}\right)V=0
Mae'r hafaliad yn y ffurf safonol.
V=0
Rhannwch 0 â -27R_{1}+3381\Omega _{2}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}