Datrys ar gyfer x
x=2\log_{1.025}\left(0.06\right)\approx -227.874689765
Datrys ar gyfer x (complex solution)
x=\frac{i\times 2\pi n_{1}}{\ln(1.025)}+2\log_{1.025}\left(0.06\right)
n_{1}\in \mathrm{Z}
Graff
Rhannu
Copïo i clipfwrdd
\frac{14.4}{4000}=1.025^{x}
Rhannu’r ddwy ochr â 4000.
\frac{144}{40000}=1.025^{x}
Ehangu \frac{14.4}{4000} drwy luosi'r rhifiadur a'r enwadur gyda 10.
\frac{9}{2500}=1.025^{x}
Lleihau'r ffracsiwn \frac{144}{40000} i'r graddau lleiaf posib drwy dynnu a chanslo allan 16.
1.025^{x}=\frac{9}{2500}
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\log(1.025^{x})=\log(\frac{9}{2500})
Cymryd logarithm dwy ochr yr hafaliad.
x\log(1.025)=\log(\frac{9}{2500})
Logarithm rhif wedi’i godi i bŵer yw’r pŵer wedi’i lluosi â logarithm y rhif.
x=\frac{\log(\frac{9}{2500})}{\log(1.025)}
Rhannu’r ddwy ochr â \log(1.025).
x=\log_{1.025}\left(\frac{9}{2500}\right)
Gyda’r fformiwla newid-sail \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}