Datrys ar gyfer x
x = \frac{500000 \sqrt{57855}}{3857} \approx 31181.055655419
x = -\frac{500000 \sqrt{57855}}{3857} \approx -31181.055655419
Graff
Rhannu
Copïo i clipfwrdd
120000=123.424\times \left(\frac{x}{1000}\right)^{2}
Lluosi 1.12 a 110.2 i gael 123.424.
120000=123.424\times \frac{x^{2}}{1000^{2}}
I godi \frac{x}{1000} i bŵer, codwch y rhifiadur a'r enwadur i bŵer ac yna rhannwch nhw.
120000=123.424\times \frac{x^{2}}{1000000}
Cyfrifo 1000 i bŵer 2 a chael 1000000.
123.424\times \frac{x^{2}}{1000000}=120000
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\frac{x^{2}}{1000000}=\frac{120000}{123.424}
Rhannu’r ddwy ochr â 123.424.
\frac{x^{2}}{1000000}=\frac{120000000}{123424}
Ehangu \frac{120000}{123.424} drwy luosi'r rhifiadur a'r enwadur gyda 1000.
\frac{x^{2}}{1000000}=\frac{3750000}{3857}
Lleihau'r ffracsiwn \frac{120000000}{123424} i'r graddau lleiaf posib drwy dynnu a chanslo allan 32.
x^{2}=\frac{3750000}{3857}\times 1000000
Lluosi’r ddwy ochr â 1000000.
x^{2}=\frac{3750000000000}{3857}
Lluosi \frac{3750000}{3857} a 1000000 i gael \frac{3750000000000}{3857}.
x=\frac{500000\sqrt{57855}}{3857} x=-\frac{500000\sqrt{57855}}{3857}
Cymryd isradd dwy ochr yr hafaliad.
120000=123.424\times \left(\frac{x}{1000}\right)^{2}
Lluosi 1.12 a 110.2 i gael 123.424.
120000=123.424\times \frac{x^{2}}{1000^{2}}
I godi \frac{x}{1000} i bŵer, codwch y rhifiadur a'r enwadur i bŵer ac yna rhannwch nhw.
120000=123.424\times \frac{x^{2}}{1000000}
Cyfrifo 1000 i bŵer 2 a chael 1000000.
123.424\times \frac{x^{2}}{1000000}=120000
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
123.424\times \frac{x^{2}}{1000000}-120000=0
Tynnu 120000 o'r ddwy ochr.
123.424x^{2}-120000000000=0
Lluoswch ddwy ochr yr hafaliad â 1000000.
x=\frac{0±\sqrt{0^{2}-4\times 123.424\left(-120000000000\right)}}{2\times 123.424}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch 123.424 am a, 0 am b, a -120000000000 am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 123.424\left(-120000000000\right)}}{2\times 123.424}
Sgwâr 0.
x=\frac{0±\sqrt{-493.696\left(-120000000000\right)}}{2\times 123.424}
Lluoswch -4 â 123.424.
x=\frac{0±\sqrt{59243520000000}}{2\times 123.424}
Lluoswch -493.696 â -120000000000.
x=\frac{0±32000\sqrt{57855}}{2\times 123.424}
Cymryd isradd 59243520000000.
x=\frac{0±32000\sqrt{57855}}{246.848}
Lluoswch 2 â 123.424.
x=\frac{500000\sqrt{57855}}{3857}
Datryswch yr hafaliad x=\frac{0±32000\sqrt{57855}}{246.848} pan fydd ± yn plws.
x=-\frac{500000\sqrt{57855}}{3857}
Datryswch yr hafaliad x=\frac{0±32000\sqrt{57855}}{246.848} pan fydd ± yn minws.
x=\frac{500000\sqrt{57855}}{3857} x=-\frac{500000\sqrt{57855}}{3857}
Mae’r hafaliad wedi’i ddatrys nawr.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}