Datrys ar gyfer x
x = \frac{25000 \sqrt{87}}{203} \approx 1148.692001612
x = -\frac{25000 \sqrt{87}}{203} \approx -1148.692001612
Graff
Cwis
Polynomial
5 problemau tebyg i:
120000 = 112 \cdot 812 { \left( \frac{ x }{ 1000 } \right) }^{ 2 }
Rhannu
Copïo i clipfwrdd
120000=90944\times \left(\frac{x}{1000}\right)^{2}
Lluosi 112 a 812 i gael 90944.
120000=90944\times \frac{x^{2}}{1000^{2}}
I godi \frac{x}{1000} i bŵer, codwch y rhifiadur a'r enwadur i bŵer ac yna rhannwch nhw.
120000=\frac{90944x^{2}}{1000^{2}}
Mynegwch 90944\times \frac{x^{2}}{1000^{2}} fel ffracsiwn unigol.
120000=\frac{90944x^{2}}{1000000}
Cyfrifo 1000 i bŵer 2 a chael 1000000.
120000=\frac{1421}{15625}x^{2}
Rhannu 90944x^{2} â 1000000 i gael \frac{1421}{15625}x^{2}.
\frac{1421}{15625}x^{2}=120000
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
x^{2}=120000\times \frac{15625}{1421}
Lluoswch y ddwy ochr â \frac{15625}{1421}, cilyddol \frac{1421}{15625}.
x^{2}=\frac{1875000000}{1421}
Lluosi 120000 a \frac{15625}{1421} i gael \frac{1875000000}{1421}.
x=\frac{25000\sqrt{87}}{203} x=-\frac{25000\sqrt{87}}{203}
Cymryd isradd dwy ochr yr hafaliad.
120000=90944\times \left(\frac{x}{1000}\right)^{2}
Lluosi 112 a 812 i gael 90944.
120000=90944\times \frac{x^{2}}{1000^{2}}
I godi \frac{x}{1000} i bŵer, codwch y rhifiadur a'r enwadur i bŵer ac yna rhannwch nhw.
120000=\frac{90944x^{2}}{1000^{2}}
Mynegwch 90944\times \frac{x^{2}}{1000^{2}} fel ffracsiwn unigol.
120000=\frac{90944x^{2}}{1000000}
Cyfrifo 1000 i bŵer 2 a chael 1000000.
120000=\frac{1421}{15625}x^{2}
Rhannu 90944x^{2} â 1000000 i gael \frac{1421}{15625}x^{2}.
\frac{1421}{15625}x^{2}=120000
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\frac{1421}{15625}x^{2}-120000=0
Tynnu 120000 o'r ddwy ochr.
x=\frac{0±\sqrt{0^{2}-4\times \frac{1421}{15625}\left(-120000\right)}}{2\times \frac{1421}{15625}}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch \frac{1421}{15625} am a, 0 am b, a -120000 am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{1421}{15625}\left(-120000\right)}}{2\times \frac{1421}{15625}}
Sgwâr 0.
x=\frac{0±\sqrt{-\frac{5684}{15625}\left(-120000\right)}}{2\times \frac{1421}{15625}}
Lluoswch -4 â \frac{1421}{15625}.
x=\frac{0±\sqrt{\frac{1091328}{25}}}{2\times \frac{1421}{15625}}
Lluoswch -\frac{5684}{15625} â -120000.
x=\frac{0±\frac{112\sqrt{87}}{5}}{2\times \frac{1421}{15625}}
Cymryd isradd \frac{1091328}{25}.
x=\frac{0±\frac{112\sqrt{87}}{5}}{\frac{2842}{15625}}
Lluoswch 2 â \frac{1421}{15625}.
x=\frac{25000\sqrt{87}}{203}
Datryswch yr hafaliad x=\frac{0±\frac{112\sqrt{87}}{5}}{\frac{2842}{15625}} pan fydd ± yn plws.
x=-\frac{25000\sqrt{87}}{203}
Datryswch yr hafaliad x=\frac{0±\frac{112\sqrt{87}}{5}}{\frac{2842}{15625}} pan fydd ± yn minws.
x=\frac{25000\sqrt{87}}{203} x=-\frac{25000\sqrt{87}}{203}
Mae’r hafaliad wedi’i ddatrys nawr.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}