Datrys ar gyfer p
p=\frac{153696374850+50\sqrt{1148595450707205174991}i}{1751804177}\approx 87.736047709+967.315156682i
p=\frac{-50\sqrt{1148595450707205174991}i+153696374850}{1751804177}\approx 87.736047709-967.315156682i
Rhannu
Copïo i clipfwrdd
1044\times \frac{1}{1000}p=83145\times 29815\left(1-186\times 10^{-6}p+106\times 10^{-8}p^{2}\right)
Cyfrifo 10 i bŵer -3 a chael \frac{1}{1000}.
\frac{261}{250}p=83145\times 29815\left(1-186\times 10^{-6}p+106\times 10^{-8}p^{2}\right)
Lluosi 1044 a \frac{1}{1000} i gael \frac{261}{250}.
\frac{261}{250}p=2478968175\left(1-186\times 10^{-6}p+106\times 10^{-8}p^{2}\right)
Lluosi 83145 a 29815 i gael 2478968175.
\frac{261}{250}p=2478968175\left(1-186\times \frac{1}{1000000}p+106\times 10^{-8}p^{2}\right)
Cyfrifo 10 i bŵer -6 a chael \frac{1}{1000000}.
\frac{261}{250}p=2478968175\left(1-\frac{93}{500000}p+106\times 10^{-8}p^{2}\right)
Lluosi 186 a \frac{1}{1000000} i gael \frac{93}{500000}.
\frac{261}{250}p=2478968175\left(1-\frac{93}{500000}p+106\times \frac{1}{100000000}p^{2}\right)
Cyfrifo 10 i bŵer -8 a chael \frac{1}{100000000}.
\frac{261}{250}p=2478968175\left(1-\frac{93}{500000}p+\frac{53}{50000000}p^{2}\right)
Lluosi 106 a \frac{1}{100000000} i gael \frac{53}{50000000}.
\frac{261}{250}p=2478968175-\frac{9221761611}{20000}p+\frac{5255412531}{2000000}p^{2}
Defnyddio’r briodwedd ddosbarthu i luosi 2478968175 â 1-\frac{93}{500000}p+\frac{53}{50000000}p^{2}.
\frac{261}{250}p-2478968175=-\frac{9221761611}{20000}p+\frac{5255412531}{2000000}p^{2}
Tynnu 2478968175 o'r ddwy ochr.
\frac{261}{250}p-2478968175+\frac{9221761611}{20000}p=\frac{5255412531}{2000000}p^{2}
Ychwanegu \frac{9221761611}{20000}p at y ddwy ochr.
\frac{9221782491}{20000}p-2478968175=\frac{5255412531}{2000000}p^{2}
Cyfuno \frac{261}{250}p a \frac{9221761611}{20000}p i gael \frac{9221782491}{20000}p.
\frac{9221782491}{20000}p-2478968175-\frac{5255412531}{2000000}p^{2}=0
Tynnu \frac{5255412531}{2000000}p^{2} o'r ddwy ochr.
-\frac{5255412531}{2000000}p^{2}+\frac{9221782491}{20000}p-2478968175=0
Mae modd datrys pob hafaliad sydd yn y ffurf ax^{2}+bx+c=0 drwy ddefnyddio'r fformiwla cwadratig: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Mae'r fformiwla cwadratig yn rhoi dau ateb, pan fydd ± yn adio â’r llall pan fydd yn tynnu.
p=\frac{-\frac{9221782491}{20000}±\sqrt{\left(\frac{9221782491}{20000}\right)^{2}-4\left(-\frac{5255412531}{2000000}\right)\left(-2478968175\right)}}{2\left(-\frac{5255412531}{2000000}\right)}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch -\frac{5255412531}{2000000} am a, \frac{9221782491}{20000} am b, a -2478968175 am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-\frac{9221782491}{20000}±\sqrt{\frac{85041272311314165081}{400000000}-4\left(-\frac{5255412531}{2000000}\right)\left(-2478968175\right)}}{2\left(-\frac{5255412531}{2000000}\right)}
Sgwariwch \frac{9221782491}{20000} drwy sgwario'r rhifiadur ag enwadur y ffracsiwn.
p=\frac{-\frac{9221782491}{20000}±\sqrt{\frac{85041272311314165081}{400000000}+\frac{5255412531}{500000}\left(-2478968175\right)}}{2\left(-\frac{5255412531}{2000000}\right)}
Lluoswch -4 â -\frac{5255412531}{2000000}.
p=\frac{-\frac{9221782491}{20000}±\sqrt{\frac{85041272311314165081}{400000000}-\frac{521120016433808037}{20000}}}{2\left(-\frac{5255412531}{2000000}\right)}
Lluoswch \frac{5255412531}{500000} â -2478968175.
p=\frac{-\frac{9221782491}{20000}±\sqrt{-\frac{10337359056364846574919}{400000000}}}{2\left(-\frac{5255412531}{2000000}\right)}
Adio \frac{85041272311314165081}{400000000} at -\frac{521120016433808037}{20000} drwy ddod o hyd i enwadur cyffredin ac ychwanegu’r rhifiaduron. Yna, lleihau’r ffracsiwn i’r termau isaf os yn bosibl.
p=\frac{-\frac{9221782491}{20000}±\frac{3\sqrt{1148595450707205174991}i}{20000}}{2\left(-\frac{5255412531}{2000000}\right)}
Cymryd isradd -\frac{10337359056364846574919}{400000000}.
p=\frac{-\frac{9221782491}{20000}±\frac{3\sqrt{1148595450707205174991}i}{20000}}{-\frac{5255412531}{1000000}}
Lluoswch 2 â -\frac{5255412531}{2000000}.
p=\frac{-9221782491+3\sqrt{1148595450707205174991}i}{-\frac{5255412531}{1000000}\times 20000}
Datryswch yr hafaliad p=\frac{-\frac{9221782491}{20000}±\frac{3\sqrt{1148595450707205174991}i}{20000}}{-\frac{5255412531}{1000000}} pan fydd ± yn plws. Adio -\frac{9221782491}{20000} at \frac{3i\sqrt{1148595450707205174991}}{20000}.
p=\frac{-50\sqrt{1148595450707205174991}i+153696374850}{1751804177}
Rhannwch \frac{-9221782491+3i\sqrt{1148595450707205174991}}{20000} â -\frac{5255412531}{1000000} drwy luosi \frac{-9221782491+3i\sqrt{1148595450707205174991}}{20000} â chilydd -\frac{5255412531}{1000000}.
p=\frac{-3\sqrt{1148595450707205174991}i-9221782491}{-\frac{5255412531}{1000000}\times 20000}
Datryswch yr hafaliad p=\frac{-\frac{9221782491}{20000}±\frac{3\sqrt{1148595450707205174991}i}{20000}}{-\frac{5255412531}{1000000}} pan fydd ± yn minws. Tynnu \frac{3i\sqrt{1148595450707205174991}}{20000} o -\frac{9221782491}{20000}.
p=\frac{153696374850+50\sqrt{1148595450707205174991}i}{1751804177}
Rhannwch \frac{-9221782491-3i\sqrt{1148595450707205174991}}{20000} â -\frac{5255412531}{1000000} drwy luosi \frac{-9221782491-3i\sqrt{1148595450707205174991}}{20000} â chilydd -\frac{5255412531}{1000000}.
p=\frac{-50\sqrt{1148595450707205174991}i+153696374850}{1751804177} p=\frac{153696374850+50\sqrt{1148595450707205174991}i}{1751804177}
Mae’r hafaliad wedi’i ddatrys nawr.
1044\times \frac{1}{1000}p=83145\times 29815\left(1-186\times 10^{-6}p+106\times 10^{-8}p^{2}\right)
Cyfrifo 10 i bŵer -3 a chael \frac{1}{1000}.
\frac{261}{250}p=83145\times 29815\left(1-186\times 10^{-6}p+106\times 10^{-8}p^{2}\right)
Lluosi 1044 a \frac{1}{1000} i gael \frac{261}{250}.
\frac{261}{250}p=2478968175\left(1-186\times 10^{-6}p+106\times 10^{-8}p^{2}\right)
Lluosi 83145 a 29815 i gael 2478968175.
\frac{261}{250}p=2478968175\left(1-186\times \frac{1}{1000000}p+106\times 10^{-8}p^{2}\right)
Cyfrifo 10 i bŵer -6 a chael \frac{1}{1000000}.
\frac{261}{250}p=2478968175\left(1-\frac{93}{500000}p+106\times 10^{-8}p^{2}\right)
Lluosi 186 a \frac{1}{1000000} i gael \frac{93}{500000}.
\frac{261}{250}p=2478968175\left(1-\frac{93}{500000}p+106\times \frac{1}{100000000}p^{2}\right)
Cyfrifo 10 i bŵer -8 a chael \frac{1}{100000000}.
\frac{261}{250}p=2478968175\left(1-\frac{93}{500000}p+\frac{53}{50000000}p^{2}\right)
Lluosi 106 a \frac{1}{100000000} i gael \frac{53}{50000000}.
\frac{261}{250}p=2478968175-\frac{9221761611}{20000}p+\frac{5255412531}{2000000}p^{2}
Defnyddio’r briodwedd ddosbarthu i luosi 2478968175 â 1-\frac{93}{500000}p+\frac{53}{50000000}p^{2}.
\frac{261}{250}p+\frac{9221761611}{20000}p=2478968175+\frac{5255412531}{2000000}p^{2}
Ychwanegu \frac{9221761611}{20000}p at y ddwy ochr.
\frac{9221782491}{20000}p=2478968175+\frac{5255412531}{2000000}p^{2}
Cyfuno \frac{261}{250}p a \frac{9221761611}{20000}p i gael \frac{9221782491}{20000}p.
\frac{9221782491}{20000}p-\frac{5255412531}{2000000}p^{2}=2478968175
Tynnu \frac{5255412531}{2000000}p^{2} o'r ddwy ochr.
-\frac{5255412531}{2000000}p^{2}+\frac{9221782491}{20000}p=2478968175
Mae modd datrys hafaliadau cwadratig fel hwn drwy gwblhau’r sgwâr. Er mwyn cwblhau’r sgwâr, yn gyntaf mae’n rhaid i'r hafaliad fod ar ffurf x^{2}+bx=c.
\frac{-\frac{5255412531}{2000000}p^{2}+\frac{9221782491}{20000}p}{-\frac{5255412531}{2000000}}=\frac{2478968175}{-\frac{5255412531}{2000000}}
Rhannu dwy ochr hafaliad â -\frac{5255412531}{2000000}, sydd yr un peth â lluosi’r ddwy ochr â chilydd y ffracsiwn.
p^{2}+\frac{\frac{9221782491}{20000}}{-\frac{5255412531}{2000000}}p=\frac{2478968175}{-\frac{5255412531}{2000000}}
Mae rhannu â -\frac{5255412531}{2000000} yn dad-wneud lluosi â -\frac{5255412531}{2000000}.
p^{2}-\frac{307392749700}{1751804177}p=\frac{2478968175}{-\frac{5255412531}{2000000}}
Rhannwch \frac{9221782491}{20000} â -\frac{5255412531}{2000000} drwy luosi \frac{9221782491}{20000} â chilydd -\frac{5255412531}{2000000}.
p^{2}-\frac{307392749700}{1751804177}p=-\frac{50000000}{53}
Rhannwch 2478968175 â -\frac{5255412531}{2000000} drwy luosi 2478968175 â chilydd -\frac{5255412531}{2000000}.
p^{2}-\frac{307392749700}{1751804177}p+\left(-\frac{153696374850}{1751804177}\right)^{2}=-\frac{50000000}{53}+\left(-\frac{153696374850}{1751804177}\right)^{2}
Rhannwch -\frac{307392749700}{1751804177}, cyfernod y term x, â 2 i gael -\frac{153696374850}{1751804177}. Yna ychwanegwch sgwâr -\frac{153696374850}{1751804177} at ddwy ochr yr hafaliad. Mae'r cam hwn yn gwneud ochr chwith yr hafaliad yn sgwâr perffaith.
p^{2}-\frac{307392749700}{1751804177}p+\frac{23622575642031712522500}{3068817874554647329}=-\frac{50000000}{53}+\frac{23622575642031712522500}{3068817874554647329}
Sgwariwch -\frac{153696374850}{1751804177} drwy sgwario'r rhifiadur ag enwadur y ffracsiwn.
p^{2}-\frac{307392749700}{1751804177}p+\frac{23622575642031712522500}{3068817874554647329}=-\frac{2871488626768012937477500}{3068817874554647329}
Adio -\frac{50000000}{53} at \frac{23622575642031712522500}{3068817874554647329} drwy ddod o hyd i enwadur cyffredin ac ychwanegu’r rhifiaduron. Yna, lleihau’r ffracsiwn i’r termau isaf os yn bosibl.
\left(p-\frac{153696374850}{1751804177}\right)^{2}=-\frac{2871488626768012937477500}{3068817874554647329}
Ffactora p^{2}-\frac{307392749700}{1751804177}p+\frac{23622575642031712522500}{3068817874554647329}. Yn gyffredinol, pan fydd x^{2}+bx+c yn sgwâr perffaith, mae modd ei ffactora bob amser fel \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p-\frac{153696374850}{1751804177}\right)^{2}}=\sqrt{-\frac{2871488626768012937477500}{3068817874554647329}}
Cymrwch isradd dwy ochr yr hafaliad.
p-\frac{153696374850}{1751804177}=\frac{50\sqrt{1148595450707205174991}i}{1751804177} p-\frac{153696374850}{1751804177}=-\frac{50\sqrt{1148595450707205174991}i}{1751804177}
Symleiddio.
p=\frac{153696374850+50\sqrt{1148595450707205174991}i}{1751804177} p=\frac{-50\sqrt{1148595450707205174991}i+153696374850}{1751804177}
Adio \frac{153696374850}{1751804177} at ddwy ochr yr hafaliad.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}