Datrys ar gyfer c
\left\{\begin{matrix}c=\frac{\pi \left(h+25\right)}{200m^{2}}\text{, }&m\neq 0\\c\in \mathrm{R}\text{, }&h=-25\text{ and }m=0\end{matrix}\right.
Datrys ar gyfer h
h=\frac{200cm^{2}}{\pi }-25
Rhannu
Copïo i clipfwrdd
10000cm^{2}=2\pi \times 625+2\pi \times 25h
Cyfrifo 25 i bŵer 2 a chael 625.
10000cm^{2}=1250\pi +2\pi \times 25h
Lluosi 2 a 625 i gael 1250.
10000cm^{2}=1250\pi +50\pi h
Lluosi 2 a 25 i gael 50.
10000m^{2}c=50\pi h+1250\pi
Mae'r hafaliad yn y ffurf safonol.
\frac{10000m^{2}c}{10000m^{2}}=\frac{50\pi \left(h+25\right)}{10000m^{2}}
Rhannu’r ddwy ochr â 10000m^{2}.
c=\frac{50\pi \left(h+25\right)}{10000m^{2}}
Mae rhannu â 10000m^{2} yn dad-wneud lluosi â 10000m^{2}.
c=\frac{\pi \left(h+25\right)}{200m^{2}}
Rhannwch 50\pi \left(25+h\right) â 10000m^{2}.
10000cm^{2}=2\pi \times 625+2\pi \times 25h
Cyfrifo 25 i bŵer 2 a chael 625.
10000cm^{2}=1250\pi +2\pi \times 25h
Lluosi 2 a 625 i gael 1250.
10000cm^{2}=1250\pi +50\pi h
Lluosi 2 a 25 i gael 50.
1250\pi +50\pi h=10000cm^{2}
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
50\pi h=10000cm^{2}-1250\pi
Tynnu 1250\pi o'r ddwy ochr.
\frac{50\pi h}{50\pi }=\frac{10000cm^{2}-1250\pi }{50\pi }
Rhannu’r ddwy ochr â 50\pi .
h=\frac{10000cm^{2}-1250\pi }{50\pi }
Mae rhannu â 50\pi yn dad-wneud lluosi â 50\pi .
h=\frac{200cm^{2}}{\pi }-25
Rhannwch 10000cm^{2}-1250\pi â 50\pi .
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}