Datrys ar gyfer K
\left\{\begin{matrix}K=\frac{8260139MR}{450000000g}\text{, }&g\neq 0\\K\in \mathrm{R}\text{, }&\left(R=0\text{ or }M=0\right)\text{ and }g=0\end{matrix}\right.
Datrys ar gyfer M
\left\{\begin{matrix}M=\frac{450000000Kg}{8260139R}\text{, }&R\neq 0\\M\in \mathrm{R}\text{, }&\left(g=0\text{ or }K=0\right)\text{ and }R=0\end{matrix}\right.
Cwis
Linear Equation
5 problemau tebyg i:
1 RM = \frac { 100 \cdot 45 Kg } { 101.3 - ( 2.67123 \cdot 7 ) }
Rhannu
Copïo i clipfwrdd
1RM=\frac{4500Kg}{101.3-2.67123\times 7}
Lluosi 100 a 45 i gael 4500.
1RM=\frac{4500Kg}{101.3-18.69861}
Lluosi 2.67123 a 7 i gael 18.69861.
1RM=\frac{4500Kg}{82.60139}
Tynnu 18.69861 o 101.3 i gael 82.60139.
1RM=\frac{450000000}{8260139}Kg
Rhannu 4500Kg â 82.60139 i gael \frac{450000000}{8260139}Kg.
\frac{450000000}{8260139}Kg=1RM
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\frac{450000000}{8260139}Kg=MR
Aildrefnu'r termau.
\frac{450000000g}{8260139}K=MR
Mae'r hafaliad yn y ffurf safonol.
\frac{8260139\times \frac{450000000g}{8260139}K}{450000000g}=\frac{8260139MR}{450000000g}
Rhannu’r ddwy ochr â \frac{450000000}{8260139}g.
K=\frac{8260139MR}{450000000g}
Mae rhannu â \frac{450000000}{8260139}g yn dad-wneud lluosi â \frac{450000000}{8260139}g.
1RM=\frac{4500Kg}{101.3-2.67123\times 7}
Lluosi 100 a 45 i gael 4500.
1RM=\frac{4500Kg}{101.3-18.69861}
Lluosi 2.67123 a 7 i gael 18.69861.
1RM=\frac{4500Kg}{82.60139}
Tynnu 18.69861 o 101.3 i gael 82.60139.
1RM=\frac{450000000}{8260139}Kg
Rhannu 4500Kg â 82.60139 i gael \frac{450000000}{8260139}Kg.
MR=\frac{450000000}{8260139}Kg
Aildrefnu'r termau.
RM=\frac{450000000Kg}{8260139}
Mae'r hafaliad yn y ffurf safonol.
\frac{RM}{R}=\frac{450000000Kg}{8260139R}
Rhannu’r ddwy ochr â R.
M=\frac{450000000Kg}{8260139R}
Mae rhannu â R yn dad-wneud lluosi â R.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}