Enrhifo
\frac{xy}{x^{2}-y^{2}}
Ehangu
\frac{xy}{x^{2}-y^{2}}
Rhannu
Copïo i clipfwrdd
1-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}
Ffactora x^{2}-y^{2}.
\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluoswch 1 â \frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}.
\frac{\left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right)}{\left(x+y\right)\left(x-y\right)}
Gan fod gan \frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} a \frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)} yr un dynodydd, tynnwch nhw drwy dynnu eu rhifiaduron.
\frac{x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2}}{\left(x+y\right)\left(x-y\right)}
Gwnewch y gwaith lluosi yn \left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right).
\frac{xy}{\left(x+y\right)\left(x-y\right)}
Cyfuno termau tebyg yn x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2}.
\frac{xy}{x^{2}-y^{2}}
Ehangu \left(x+y\right)\left(x-y\right).
1-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}
Ffactora x^{2}-y^{2}.
\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}-\frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluoswch 1 â \frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}.
\frac{\left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right)}{\left(x+y\right)\left(x-y\right)}
Gan fod gan \frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)\left(x-y\right)} a \frac{x^{2}-xy-y^{2}}{\left(x+y\right)\left(x-y\right)} yr un dynodydd, tynnwch nhw drwy dynnu eu rhifiaduron.
\frac{x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2}}{\left(x+y\right)\left(x-y\right)}
Gwnewch y gwaith lluosi yn \left(x+y\right)\left(x-y\right)-\left(x^{2}-xy-y^{2}\right).
\frac{xy}{\left(x+y\right)\left(x-y\right)}
Cyfuno termau tebyg yn x^{2}-xy+yx-y^{2}-x^{2}+xy+y^{2}.
\frac{xy}{x^{2}-y^{2}}
Ehangu \left(x+y\right)\left(x-y\right).
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}