Datrys ar gyfer x
x=\frac{25000000000D^{2}}{667}
D\neq 0
Datrys ar gyfer D (complex solution)
D=-\frac{\sqrt{6670x}}{500000}
D=\frac{\sqrt{6670x}}{500000}\text{, }x\neq 0
Datrys ar gyfer D
D=\frac{\sqrt{6670x}}{500000}
D=-\frac{\sqrt{6670x}}{500000}\text{, }x>0
Graff
Cwis
Algebra
5 problemau tebyg i:
1 = 667 \frac { x 10 ^ { - 11 } \times 2 \times 2 } { ( D ) ^ { 2 } }
Rhannu
Copïo i clipfwrdd
\frac{1}{667}=\frac{x\times 10^{-11}\times 2\times 2}{D^{2}}
Rhannu’r ddwy ochr â 667.
D^{2}=667x\times 10^{-11}\times 2\times 2
Lluoswch ddwy ochr yr hafaliad wrth 667D^{2}, lluoswm cyffredin lleiaf 667,D^{2}.
D^{2}=667x\times \frac{1}{100000000000}\times 2\times 2
Cyfrifo 10 i bŵer -11 a chael \frac{1}{100000000000}.
D^{2}=\frac{667}{100000000000}x\times 2\times 2
Lluosi 667 a \frac{1}{100000000000} i gael \frac{667}{100000000000}.
D^{2}=\frac{667}{50000000000}x\times 2
Lluosi \frac{667}{100000000000} a 2 i gael \frac{667}{50000000000}.
D^{2}=\frac{667}{25000000000}x
Lluosi \frac{667}{50000000000} a 2 i gael \frac{667}{25000000000}.
\frac{667}{25000000000}x=D^{2}
Cyfnewidiwch yr ochrau fel bod yr holl dermau newidiol ar yr ochr chwith.
\frac{\frac{667}{25000000000}x}{\frac{667}{25000000000}}=\frac{D^{2}}{\frac{667}{25000000000}}
Rhannu dwy ochr hafaliad â \frac{667}{25000000000}, sydd yr un peth â lluosi’r ddwy ochr â chilydd y ffracsiwn.
x=\frac{D^{2}}{\frac{667}{25000000000}}
Mae rhannu â \frac{667}{25000000000} yn dad-wneud lluosi â \frac{667}{25000000000}.
x=\frac{25000000000D^{2}}{667}
Rhannwch D^{2} â \frac{667}{25000000000} drwy luosi D^{2} â chilydd \frac{667}{25000000000}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}