Neidio i'r prif gynnwys
Datrys ar gyfer x
Tick mark Image
Graff

Problemau tebyg o chwiliad gwe

Rhannu

-500000x^{2}+45x-9\times \frac{1}{1000000}=0
Cyfrifo 10 i bŵer -6 a chael \frac{1}{1000000}.
-500000x^{2}+45x-\frac{9}{1000000}=0
Lluosi 9 a \frac{1}{1000000} i gael \frac{9}{1000000}.
x=\frac{-45±\sqrt{45^{2}-4\left(-500000\right)\left(-\frac{9}{1000000}\right)}}{2\left(-500000\right)}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch -500000 am a, 45 am b, a -\frac{9}{1000000} am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-45±\sqrt{2025-4\left(-500000\right)\left(-\frac{9}{1000000}\right)}}{2\left(-500000\right)}
Sgwâr 45.
x=\frac{-45±\sqrt{2025+2000000\left(-\frac{9}{1000000}\right)}}{2\left(-500000\right)}
Lluoswch -4 â -500000.
x=\frac{-45±\sqrt{2025-18}}{2\left(-500000\right)}
Lluoswch 2000000 â -\frac{9}{1000000}.
x=\frac{-45±\sqrt{2007}}{2\left(-500000\right)}
Adio 2025 at -18.
x=\frac{-45±3\sqrt{223}}{2\left(-500000\right)}
Cymryd isradd 2007.
x=\frac{-45±3\sqrt{223}}{-1000000}
Lluoswch 2 â -500000.
x=\frac{3\sqrt{223}-45}{-1000000}
Datryswch yr hafaliad x=\frac{-45±3\sqrt{223}}{-1000000} pan fydd ± yn plws. Adio -45 at 3\sqrt{223}.
x=-\frac{3\sqrt{223}}{1000000}+\frac{9}{200000}
Rhannwch -45+3\sqrt{223} â -1000000.
x=\frac{-3\sqrt{223}-45}{-1000000}
Datryswch yr hafaliad x=\frac{-45±3\sqrt{223}}{-1000000} pan fydd ± yn minws. Tynnu 3\sqrt{223} o -45.
x=\frac{3\sqrt{223}}{1000000}+\frac{9}{200000}
Rhannwch -45-3\sqrt{223} â -1000000.
x=-\frac{3\sqrt{223}}{1000000}+\frac{9}{200000} x=\frac{3\sqrt{223}}{1000000}+\frac{9}{200000}
Mae’r hafaliad wedi’i ddatrys nawr.
-500000x^{2}+45x-9\times \frac{1}{1000000}=0
Cyfrifo 10 i bŵer -6 a chael \frac{1}{1000000}.
-500000x^{2}+45x-\frac{9}{1000000}=0
Lluosi 9 a \frac{1}{1000000} i gael \frac{9}{1000000}.
-500000x^{2}+45x=\frac{9}{1000000}
Ychwanegu \frac{9}{1000000} at y ddwy ochr. Mae adio unrhyw beth at sero yn cyrraedd ei swm ei hun.
\frac{-500000x^{2}+45x}{-500000}=\frac{\frac{9}{1000000}}{-500000}
Rhannu’r ddwy ochr â -500000.
x^{2}+\frac{45}{-500000}x=\frac{\frac{9}{1000000}}{-500000}
Mae rhannu â -500000 yn dad-wneud lluosi â -500000.
x^{2}-\frac{9}{100000}x=\frac{\frac{9}{1000000}}{-500000}
Lleihau'r ffracsiwn \frac{45}{-500000} i'r graddau lleiaf posib drwy dynnu a chanslo allan 5.
x^{2}-\frac{9}{100000}x=-\frac{9}{500000000000}
Rhannwch \frac{9}{1000000} â -500000.
x^{2}-\frac{9}{100000}x+\left(-\frac{9}{200000}\right)^{2}=-\frac{9}{500000000000}+\left(-\frac{9}{200000}\right)^{2}
Rhannwch -\frac{9}{100000}, cyfernod y term x, â 2 i gael -\frac{9}{200000}. Yna ychwanegwch sgwâr -\frac{9}{200000} at ddwy ochr yr hafaliad. Mae'r cam hwn yn gwneud ochr chwith yr hafaliad yn sgwâr perffaith.
x^{2}-\frac{9}{100000}x+\frac{81}{40000000000}=-\frac{9}{500000000000}+\frac{81}{40000000000}
Sgwariwch -\frac{9}{200000} drwy sgwario'r rhifiadur ag enwadur y ffracsiwn.
x^{2}-\frac{9}{100000}x+\frac{81}{40000000000}=\frac{2007}{1000000000000}
Adio -\frac{9}{500000000000} at \frac{81}{40000000000} drwy ddod o hyd i enwadur cyffredin ac ychwanegu’r rhifiaduron. Yna, lleihau’r ffracsiwn i’r termau isaf os yn bosibl.
\left(x-\frac{9}{200000}\right)^{2}=\frac{2007}{1000000000000}
Ffactora x^{2}-\frac{9}{100000}x+\frac{81}{40000000000}. Yn gyffredinol, pan fydd x^{2}+bx+c yn sgwâr perffaith, mae modd ei ffactora bob amser fel \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{200000}\right)^{2}}=\sqrt{\frac{2007}{1000000000000}}
Cymrwch isradd dwy ochr yr hafaliad.
x-\frac{9}{200000}=\frac{3\sqrt{223}}{1000000} x-\frac{9}{200000}=-\frac{3\sqrt{223}}{1000000}
Symleiddio.
x=\frac{3\sqrt{223}}{1000000}+\frac{9}{200000} x=-\frac{3\sqrt{223}}{1000000}+\frac{9}{200000}
Adio \frac{9}{200000} at ddwy ochr yr hafaliad.