Datrys ar gyfer y
y=\frac{9\left(x-40\right)^{3}}{5}-30
Datrys ar gyfer x (complex solution)
x=\frac{\sqrt[3]{15\left(y+30\right)}+120}{3}
x=\frac{e^{\frac{4\pi i}{3}}\sqrt[3]{15\left(y+30\right)}+120}{3}
x=\frac{e^{\frac{2\pi i}{3}}\sqrt[3]{15\left(y+30\right)}+120}{3}
Datrys ar gyfer x
x=\frac{\sqrt[3]{15\left(y+30\right)}+120}{3}
Graff
Rhannu
Copïo i clipfwrdd
-y=-\frac{9}{5}\left(x^{3}-120x^{2}+4800x-64000\right)+30
Defnyddio'r theorem binomaidd \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} i ehangu'r \left(x-40\right)^{3}.
-y=-\frac{9}{5}x^{3}+216x^{2}-8640x+115200+30
Defnyddio’r briodwedd ddosbarthu i luosi -\frac{9}{5} â x^{3}-120x^{2}+4800x-64000.
-y=-\frac{9}{5}x^{3}+216x^{2}-8640x+115230
Adio 115200 a 30 i gael 115230.
-y=-\frac{9x^{3}}{5}+216x^{2}-8640x+115230
Mae'r hafaliad yn y ffurf safonol.
\frac{-y}{-1}=\frac{-\frac{9x^{3}}{5}+216x^{2}-8640x+115230}{-1}
Rhannu’r ddwy ochr â -1.
y=\frac{-\frac{9x^{3}}{5}+216x^{2}-8640x+115230}{-1}
Mae rhannu â -1 yn dad-wneud lluosi â -1.
y=\frac{9x^{3}}{5}-216x^{2}+8640x-115230
Rhannwch -\frac{9x^{3}}{5}+216x^{2}-8640x+115230 â -1.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}