Neidio i'r prif gynnwys
Ffactor
Tick mark Image
Enrhifo
Tick mark Image
Graff

Problemau tebyg o chwiliad gwe

Rhannu

3\left(-x^{2}+2x+3\right)
Ffactora allan 3.
a+b=2 ab=-3=-3
Ystyriwch -x^{2}+2x+3. Dylech ffactorio'r mynegiant drwy grwpio. Yn gyntaf, mae angen ailysgrifennu'r mynegiant ar ffurf -x^{2}+ax+bx+3. I ddod o hyd i a a b, gosodwch system i'w datrys.
a=3 b=-1
Gan fod ab yn negatif, mae gan a a b yr arwyddion croes. Gan fod a+b yn bositif, mae gan y rhif positif werth absoliwt mwy na'r negatif. Yr unig fath o bâr yw ateb y system.
\left(-x^{2}+3x\right)+\left(-x+3\right)
Ailysgrifennwch -x^{2}+2x+3 fel \left(-x^{2}+3x\right)+\left(-x+3\right).
-x\left(x-3\right)-\left(x-3\right)
Ni ddylech ffactorio -x yn y cyntaf a -1 yn yr ail grŵp.
\left(x-3\right)\left(-x-1\right)
Ffactoriwch y term cyffredin x-3 allan drwy ddefnyddio'r briodwedd ddosbarthol.
3\left(x-3\right)\left(-x-1\right)
Ailysgrifennwch y mynegiad cyfan wedi'i ffactorio.
-3x^{2}+6x+9=0
Gellir ffactorio polynomial cwadratig gan ddefnyddio’r trawsffurfiad ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), lle x_{1} a x_{2} yw datrysiadau’r hafaliad cwadratig ax^{2}+bx+c=0.
x=\frac{-6±\sqrt{6^{2}-4\left(-3\right)\times 9}}{2\left(-3\right)}
Mae modd datrys pob hafaliad sydd yn y ffurf ax^{2}+bx+c=0 drwy ddefnyddio'r fformiwla cwadratig: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Mae'r fformiwla cwadratig yn rhoi dau ateb, pan fydd ± yn adio â’r llall pan fydd yn tynnu.
x=\frac{-6±\sqrt{36-4\left(-3\right)\times 9}}{2\left(-3\right)}
Sgwâr 6.
x=\frac{-6±\sqrt{36+12\times 9}}{2\left(-3\right)}
Lluoswch -4 â -3.
x=\frac{-6±\sqrt{36+108}}{2\left(-3\right)}
Lluoswch 12 â 9.
x=\frac{-6±\sqrt{144}}{2\left(-3\right)}
Adio 36 at 108.
x=\frac{-6±12}{2\left(-3\right)}
Cymryd isradd 144.
x=\frac{-6±12}{-6}
Lluoswch 2 â -3.
x=\frac{6}{-6}
Datryswch yr hafaliad x=\frac{-6±12}{-6} pan fydd ± yn plws. Adio -6 at 12.
x=-1
Rhannwch 6 â -6.
x=-\frac{18}{-6}
Datryswch yr hafaliad x=\frac{-6±12}{-6} pan fydd ± yn minws. Tynnu 12 o -6.
x=3
Rhannwch -18 â -6.
-3x^{2}+6x+9=-3\left(x-\left(-1\right)\right)\left(x-3\right)
Ffactoriwch y mynegiad gwreiddiol gan ddefnyddio ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Cyfnewidiwch -1 am x_{1} a 3 am x_{2}.
-3x^{2}+6x+9=-3\left(x+1\right)\left(x-3\right)
Symleiddiwch bob mynegiad ar y ffurf p-\left(-q\right) i p+q.