Datrys ar gyfer x
x=1
x=-3
Graff
Rhannu
Copïo i clipfwrdd
-\left(x^{2}+2x+1\right)+4=0
Defnyddio'r theorem binomaidd \left(a+b\right)^{2}=a^{2}+2ab+b^{2} i ehangu'r \left(x+1\right)^{2}.
-x^{2}-2x-1+4=0
I ddod o hyd i wrthwyneb x^{2}+2x+1, dewch o hyd i wrthwyneb pob term.
-x^{2}-2x+3=0
Adio -1 a 4 i gael 3.
a+b=-2 ab=-3=-3
I ddatrys yr hafaliad, dylech ffactorio'r ochr chwith drwy grwpio. Yn gyntaf, mae angen ailysgrifennu'r ochr chwith fel -x^{2}+ax+bx+3. I ddod o hyd i a a b, gosodwch system i'w datrys.
a=1 b=-3
Gan fod ab yn negatif, mae gan a a b yr arwyddion croes. Gan fod a+b yn negatif, mae gan y rhif negatif werth absoliwt mwy na'r positif. Yr unig fath o bâr yw ateb y system.
\left(-x^{2}+x\right)+\left(-3x+3\right)
Ailysgrifennwch -x^{2}-2x+3 fel \left(-x^{2}+x\right)+\left(-3x+3\right).
x\left(-x+1\right)+3\left(-x+1\right)
Ni ddylech ffactorio x yn y cyntaf a 3 yn yr ail grŵp.
\left(-x+1\right)\left(x+3\right)
Ffactoriwch y term cyffredin -x+1 allan drwy ddefnyddio'r briodwedd ddosbarthol.
x=1 x=-3
I ddod o hyd i atebion hafaliad, datryswch -x+1=0 a x+3=0.
-\left(x^{2}+2x+1\right)+4=0
Defnyddio'r theorem binomaidd \left(a+b\right)^{2}=a^{2}+2ab+b^{2} i ehangu'r \left(x+1\right)^{2}.
-x^{2}-2x-1+4=0
I ddod o hyd i wrthwyneb x^{2}+2x+1, dewch o hyd i wrthwyneb pob term.
-x^{2}-2x+3=0
Adio -1 a 4 i gael 3.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch -1 am a, -2 am b, a 3 am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)\times 3}}{2\left(-1\right)}
Sgwâr -2.
x=\frac{-\left(-2\right)±\sqrt{4+4\times 3}}{2\left(-1\right)}
Lluoswch -4 â -1.
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2\left(-1\right)}
Lluoswch 4 â 3.
x=\frac{-\left(-2\right)±\sqrt{16}}{2\left(-1\right)}
Adio 4 at 12.
x=\frac{-\left(-2\right)±4}{2\left(-1\right)}
Cymryd isradd 16.
x=\frac{2±4}{2\left(-1\right)}
Gwrthwyneb -2 yw 2.
x=\frac{2±4}{-2}
Lluoswch 2 â -1.
x=\frac{6}{-2}
Datryswch yr hafaliad x=\frac{2±4}{-2} pan fydd ± yn plws. Adio 2 at 4.
x=-3
Rhannwch 6 â -2.
x=-\frac{2}{-2}
Datryswch yr hafaliad x=\frac{2±4}{-2} pan fydd ± yn minws. Tynnu 4 o 2.
x=1
Rhannwch -2 â -2.
x=-3 x=1
Mae’r hafaliad wedi’i ddatrys nawr.
-\left(x^{2}+2x+1\right)+4=0
Defnyddio'r theorem binomaidd \left(a+b\right)^{2}=a^{2}+2ab+b^{2} i ehangu'r \left(x+1\right)^{2}.
-x^{2}-2x-1+4=0
I ddod o hyd i wrthwyneb x^{2}+2x+1, dewch o hyd i wrthwyneb pob term.
-x^{2}-2x+3=0
Adio -1 a 4 i gael 3.
-x^{2}-2x=-3
Tynnu 3 o'r ddwy ochr. Mae tynnu unrhyw beth o sero’n rhoi negydd y swm.
\frac{-x^{2}-2x}{-1}=-\frac{3}{-1}
Rhannu’r ddwy ochr â -1.
x^{2}+\left(-\frac{2}{-1}\right)x=-\frac{3}{-1}
Mae rhannu â -1 yn dad-wneud lluosi â -1.
x^{2}+2x=-\frac{3}{-1}
Rhannwch -2 â -1.
x^{2}+2x=3
Rhannwch -3 â -1.
x^{2}+2x+1^{2}=3+1^{2}
Rhannwch 2, cyfernod y term x, â 2 i gael 1. Yna ychwanegwch sgwâr 1 at ddwy ochr yr hafaliad. Mae'r cam hwn yn gwneud ochr chwith yr hafaliad yn sgwâr perffaith.
x^{2}+2x+1=3+1
Sgwâr 1.
x^{2}+2x+1=4
Adio 3 at 1.
\left(x+1\right)^{2}=4
Ffactora x^{2}+2x+1. Yn gyffredinol, pan fydd x^{2}+bx+c yn sgwâr perffaith, mae modd ei ffactora bob amser fel \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{4}
Cymrwch isradd dwy ochr yr hafaliad.
x+1=2 x+1=-2
Symleiddio.
x=1 x=-3
Tynnu 1 o ddwy ochr yr hafaliad.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}