Enrhifo
-\frac{2\sqrt{2}}{3}-\frac{4\sqrt{5}}{15}+\frac{4}{3}\approx -0.205760502
Rhannu
Copïo i clipfwrdd
\frac{-\left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-\left(-\frac{1}{\sqrt{5}}\right)+\left(-\sqrt{4}\right)^{3}+2\left(\sqrt{16}-\frac{1}{2}\right)\right)}{\frac{3}{4}}
Mae'n rhesymoli enwadur \frac{1}{\sqrt{2}} drwy luosi'r rhifiadur a'r enwadur â \sqrt{2}.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{1}{\sqrt{5}}\right)+\left(-\sqrt{4}\right)^{3}+2\left(\sqrt{16}-\frac{1}{2}\right)\right)}{\frac{3}{4}}
Sgwâr \sqrt{2} yw 2.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\right)+\left(-\sqrt{4}\right)^{3}+2\left(\sqrt{16}-\frac{1}{2}\right)\right)}{\frac{3}{4}}
Mae'n rhesymoli enwadur \frac{1}{\sqrt{5}} drwy luosi'r rhifiadur a'r enwadur â \sqrt{5}.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)+\left(-\sqrt{4}\right)^{3}+2\left(\sqrt{16}-\frac{1}{2}\right)\right)}{\frac{3}{4}}
Sgwâr \sqrt{5} yw 5.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)+\left(-2\right)^{3}+2\left(\sqrt{16}-\frac{1}{2}\right)\right)}{\frac{3}{4}}
Cyfrifo ail isradd 4 a chael 2.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)-8+2\left(\sqrt{16}-\frac{1}{2}\right)\right)}{\frac{3}{4}}
Cyfrifo -2 i bŵer 3 a chael -8.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)-8+2\left(4-\frac{1}{2}\right)\right)}{\frac{3}{4}}
Cyfrifo ail isradd 16 a chael 4.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)-8+2\times \frac{7}{2}\right)}{\frac{3}{4}}
Tynnu \frac{1}{2} o 4 i gael \frac{7}{2}.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)-8+7\right)}{\frac{3}{4}}
Lluosi 2 a \frac{7}{2} i gael 7.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)-1\right)}{\frac{3}{4}}
Adio -8 a 7 i gael -1.
\frac{-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)\right)+1}{\frac{3}{4}}
I ddod o hyd i wrthwyneb \frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)-1, dewch o hyd i wrthwyneb pob term.
\frac{\left(-\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)\right)+1\right)\times 4}{3}
Rhannwch -\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)\right)+1 â \frac{3}{4} drwy luosi -\left(\frac{\sqrt{2}}{2}-\left(-\frac{\sqrt{5}}{5}\right)\right)+1 â chilydd \frac{3}{4}.
\frac{\left(-\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{5}}{5}\right)+1\right)\times 4}{3}
Lluosi -1 a -1 i gael 1.
\frac{\left(-\left(\frac{5\sqrt{2}}{10}+\frac{2\sqrt{5}}{10}\right)+1\right)\times 4}{3}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluosrif lleiaf cyffredin 2 a 5 yw 10. Lluoswch \frac{\sqrt{2}}{2} â \frac{5}{5}. Lluoswch \frac{\sqrt{5}}{5} â \frac{2}{2}.
\frac{\left(-\frac{5\sqrt{2}+2\sqrt{5}}{10}+1\right)\times 4}{3}
Gan fod gan \frac{5\sqrt{2}}{10} a \frac{2\sqrt{5}}{10} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
\frac{\left(-\frac{5\sqrt{2}+2\sqrt{5}}{10}+\frac{10}{10}\right)\times 4}{3}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluoswch 1 â \frac{10}{10}.
\frac{\frac{-\left(5\sqrt{2}+2\sqrt{5}\right)+10}{10}\times 4}{3}
Gan fod gan -\frac{5\sqrt{2}+2\sqrt{5}}{10} a \frac{10}{10} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
\frac{\frac{-5\sqrt{2}-2\sqrt{5}+10}{10}\times 4}{3}
Gwnewch y gwaith lluosi yn -\left(5\sqrt{2}+2\sqrt{5}\right)+10.
\frac{\frac{\left(-5\sqrt{2}-2\sqrt{5}+10\right)\times 4}{10}}{3}
Mynegwch \frac{-5\sqrt{2}-2\sqrt{5}+10}{10}\times 4 fel ffracsiwn unigol.
\frac{\left(-5\sqrt{2}-2\sqrt{5}+10\right)\times 4}{10\times 3}
Mynegwch \frac{\frac{\left(-5\sqrt{2}-2\sqrt{5}+10\right)\times 4}{10}}{3} fel ffracsiwn unigol.
\frac{2\left(-5\sqrt{2}-2\sqrt{5}+10\right)}{3\times 5}
Canslo 2 yn y rhifiadur a'r enwadur.
\frac{2\left(-5\sqrt{2}-2\sqrt{5}+10\right)}{15}
Lluosi 3 a 5 i gael 15.
\frac{-10\sqrt{2}-4\sqrt{5}+20}{15}
Defnyddio’r briodwedd ddosbarthu i luosi 2 â -5\sqrt{2}-2\sqrt{5}+10.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}