Datrys ar gyfer x
x=\frac{100y}{y+100}
y\neq -100
Datrys ar gyfer y
y=\frac{100x}{100-x}
x\neq 100
Graff
Rhannu
Copïo i clipfwrdd
\left(100-x\right)y\left(1+0\times 2x\right)=100x
Lluosi 0 a 0 i gael 0.
\left(100-x\right)y\left(1+0x\right)=100x
Lluosi 0 a 2 i gael 0.
\left(100-x\right)y\left(1+0\right)=100x
Mae lluosi unrhyw beth â sero yn rhoi sero.
\left(100-x\right)y\times 1=100x
Adio 1 a 0 i gael 1.
\left(100y-xy\right)\times 1=100x
Defnyddio’r briodwedd ddosbarthu i luosi 100-x â y.
100y-xy=100x
Defnyddio’r briodwedd ddosbarthu i luosi 100y-xy â 1.
100y-xy-100x=0
Tynnu 100x o'r ddwy ochr.
-xy-100x=-100y
Tynnu 100y o'r ddwy ochr. Mae tynnu unrhyw beth o sero’n rhoi negydd y swm.
\left(-y-100\right)x=-100y
Cyfuno pob term sy'n cynnwys x.
\frac{\left(-y-100\right)x}{-y-100}=-\frac{100y}{-y-100}
Rhannu’r ddwy ochr â -y-100.
x=-\frac{100y}{-y-100}
Mae rhannu â -y-100 yn dad-wneud lluosi â -y-100.
x=\frac{100y}{y+100}
Rhannwch -100y â -y-100.
\left(100-x\right)y\left(1+0\times 2x\right)=100x
Lluosi 0 a 0 i gael 0.
\left(100-x\right)y\left(1+0x\right)=100x
Lluosi 0 a 2 i gael 0.
\left(100-x\right)y\left(1+0\right)=100x
Mae lluosi unrhyw beth â sero yn rhoi sero.
\left(100-x\right)y\times 1=100x
Adio 1 a 0 i gael 1.
\left(100y-xy\right)\times 1=100x
Defnyddio’r briodwedd ddosbarthu i luosi 100-x â y.
100y-xy=100x
Defnyddio’r briodwedd ddosbarthu i luosi 100y-xy â 1.
\left(100-x\right)y=100x
Cyfuno pob term sy'n cynnwys y.
\frac{\left(100-x\right)y}{100-x}=\frac{100x}{100-x}
Rhannu’r ddwy ochr â 100-x.
y=\frac{100x}{100-x}
Mae rhannu â 100-x yn dad-wneud lluosi â 100-x.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}