Neidio i'r prif gynnwys
Datrys ar gyfer x
Tick mark Image
Graff

Problemau tebyg o chwiliad gwe

Rhannu

x^{2}-8x+16=0
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(x-4\right)^{2}.
a+b=-8 ab=16
Er mwyn datrys yr hafaliad, dylech ffactorio x^{2}-8x+16 gan ddefnyddio'r fformiwla x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). I ddod o hyd i a a b, gosodwch system i'w datrys.
-1,-16 -2,-8 -4,-4
Gan fod ab yn bositif, mae gan a a b yr un arwydd. Gan fod a+b yn negatif, mae a a b ill dau yn negatif. Rhestrwch bob pâr cyfanrif o'r fath sy'n rhoi'r cynnyrch 16.
-1-16=-17 -2-8=-10 -4-4=-8
Cyfrifo'r swm ar gyfer pob pâr.
a=-4 b=-4
Yr ateb yw'r pâr sy'n rhoi'r swm -8.
\left(x-4\right)\left(x-4\right)
Ail-ysgrifennwch y mynegiant wedi'i ffactorio \left(x+a\right)\left(x+b\right) gan ddefnyddio'r gwerthoedd a gafwyd.
\left(x-4\right)^{2}
Ailysgrifennu fel sgwâr binomial.
x=4
I ddod o hyd i ateb hafaliad, datryswch x-4=0.
x^{2}-8x+16=0
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(x-4\right)^{2}.
a+b=-8 ab=1\times 16=16
I ddatrys yr hafaliad, dylech ffactorio'r ochr chwith drwy grwpio. Yn gyntaf, mae angen ailysgrifennu'r ochr chwith fel x^{2}+ax+bx+16. I ddod o hyd i a a b, gosodwch system i'w datrys.
-1,-16 -2,-8 -4,-4
Gan fod ab yn bositif, mae gan a a b yr un arwydd. Gan fod a+b yn negatif, mae a a b ill dau yn negatif. Rhestrwch bob pâr cyfanrif o'r fath sy'n rhoi'r cynnyrch 16.
-1-16=-17 -2-8=-10 -4-4=-8
Cyfrifo'r swm ar gyfer pob pâr.
a=-4 b=-4
Yr ateb yw'r pâr sy'n rhoi'r swm -8.
\left(x^{2}-4x\right)+\left(-4x+16\right)
Ailysgrifennwch x^{2}-8x+16 fel \left(x^{2}-4x\right)+\left(-4x+16\right).
x\left(x-4\right)-4\left(x-4\right)
Ni ddylech ffactorio x yn y cyntaf a -4 yn yr ail grŵp.
\left(x-4\right)\left(x-4\right)
Ffactoriwch y term cyffredin x-4 allan drwy ddefnyddio'r briodwedd ddosbarthol.
\left(x-4\right)^{2}
Ailysgrifennu fel sgwâr binomial.
x=4
I ddod o hyd i ateb hafaliad, datryswch x-4=0.
x^{2}-8x+16=0
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(x-4\right)^{2}.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 16}}{2}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch 1 am a, -8 am b, a 16 am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 16}}{2}
Sgwâr -8.
x=\frac{-\left(-8\right)±\sqrt{64-64}}{2}
Lluoswch -4 â 16.
x=\frac{-\left(-8\right)±\sqrt{0}}{2}
Adio 64 at -64.
x=-\frac{-8}{2}
Cymryd isradd 0.
x=\frac{8}{2}
Gwrthwyneb -8 yw 8.
x=4
Rhannwch 8 â 2.
\sqrt{\left(x-4\right)^{2}}=\sqrt{0}
Cymrwch isradd dwy ochr yr hafaliad.
x-4=0 x-4=0
Symleiddio.
x=4 x=4
Adio 4 at ddwy ochr yr hafaliad.
x=4
Mae’r hafaliad wedi’i ddatrys nawr. Mae’r datrysiadau yr un peth.