Datrys ar gyfer x
x=\sqrt{10}+3\approx 6.16227766
x=3-\sqrt{10}\approx -0.16227766
Graff
Rhannu
Copïo i clipfwrdd
\left(x-3\right)^{2}-10+10=10
Adio 10 at ddwy ochr yr hafaliad.
\left(x-3\right)^{2}=10
Mae tynnu 10 o’i hun yn gadael 0.
x-3=\sqrt{10} x-3=-\sqrt{10}
Cymryd isradd dwy ochr yr hafaliad.
x-3-\left(-3\right)=\sqrt{10}-\left(-3\right) x-3-\left(-3\right)=-\sqrt{10}-\left(-3\right)
Adio 3 at ddwy ochr yr hafaliad.
x=\sqrt{10}-\left(-3\right) x=-\sqrt{10}-\left(-3\right)
Mae tynnu -3 o’i hun yn gadael 0.
x=\sqrt{10}+3
Tynnu -3 o \sqrt{10}.
x=3-\sqrt{10}
Tynnu -3 o -\sqrt{10}.
x=\sqrt{10}+3 x=3-\sqrt{10}
Mae’r hafaliad wedi’i ddatrys nawr.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}