Datrys ar gyfer x
x=2
Graff
Rhannu
Copïo i clipfwrdd
x^{2}-4x+4=0
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(x-2\right)^{2}.
a+b=-4 ab=4
Er mwyn datrys yr hafaliad, dylech ffactorio x^{2}-4x+4 gan ddefnyddio'r fformiwla x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). I ddod o hyd i a a b, gosodwch system i'w datrys.
-1,-4 -2,-2
Gan fod ab yn bositif, mae gan a a b yr un arwydd. Gan fod a+b yn negatif, mae a a b ill dau yn negatif. Rhestrwch bob pâr cyfanrif o'r fath sy'n rhoi'r cynnyrch 4.
-1-4=-5 -2-2=-4
Cyfrifo'r swm ar gyfer pob pâr.
a=-2 b=-2
Yr ateb yw'r pâr sy'n rhoi'r swm -4.
\left(x-2\right)\left(x-2\right)
Ail-ysgrifennwch y mynegiant wedi'i ffactorio \left(x+a\right)\left(x+b\right) gan ddefnyddio'r gwerthoedd a gafwyd.
\left(x-2\right)^{2}
Ailysgrifennu fel sgwâr binomial.
x=2
I ddod o hyd i ateb hafaliad, datryswch x-2=0.
x^{2}-4x+4=0
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(x-2\right)^{2}.
a+b=-4 ab=1\times 4=4
I ddatrys yr hafaliad, dylech ffactorio'r ochr chwith drwy grwpio. Yn gyntaf, mae angen ailysgrifennu'r ochr chwith fel x^{2}+ax+bx+4. I ddod o hyd i a a b, gosodwch system i'w datrys.
-1,-4 -2,-2
Gan fod ab yn bositif, mae gan a a b yr un arwydd. Gan fod a+b yn negatif, mae a a b ill dau yn negatif. Rhestrwch bob pâr cyfanrif o'r fath sy'n rhoi'r cynnyrch 4.
-1-4=-5 -2-2=-4
Cyfrifo'r swm ar gyfer pob pâr.
a=-2 b=-2
Yr ateb yw'r pâr sy'n rhoi'r swm -4.
\left(x^{2}-2x\right)+\left(-2x+4\right)
Ailysgrifennwch x^{2}-4x+4 fel \left(x^{2}-2x\right)+\left(-2x+4\right).
x\left(x-2\right)-2\left(x-2\right)
Ni ddylech ffactorio x yn y cyntaf a -2 yn yr ail grŵp.
\left(x-2\right)\left(x-2\right)
Ffactoriwch y term cyffredin x-2 allan drwy ddefnyddio'r briodwedd ddosbarthol.
\left(x-2\right)^{2}
Ailysgrifennu fel sgwâr binomial.
x=2
I ddod o hyd i ateb hafaliad, datryswch x-2=0.
x^{2}-4x+4=0
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(x-2\right)^{2}.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4}}{2}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch 1 am a, -4 am b, a 4 am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 4}}{2}
Sgwâr -4.
x=\frac{-\left(-4\right)±\sqrt{16-16}}{2}
Lluoswch -4 â 4.
x=\frac{-\left(-4\right)±\sqrt{0}}{2}
Adio 16 at -16.
x=-\frac{-4}{2}
Cymryd isradd 0.
x=\frac{4}{2}
Gwrthwyneb -4 yw 4.
x=2
Rhannwch 4 â 2.
\sqrt{\left(x-2\right)^{2}}=\sqrt{0}
Cymrwch isradd dwy ochr yr hafaliad.
x-2=0 x-2=0
Symleiddio.
x=2 x=2
Adio 2 at ddwy ochr yr hafaliad.
x=2
Mae’r hafaliad wedi’i ddatrys nawr. Mae’r datrysiadau yr un peth.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}