Datrys ar gyfer x
x=1
x=-7
Graff
Rhannu
Copïo i clipfwrdd
x^{2}+6x+9=16
Defnyddio'r theorem binomaidd \left(a+b\right)^{2}=a^{2}+2ab+b^{2} i ehangu'r \left(x+3\right)^{2}.
x^{2}+6x+9-16=0
Tynnu 16 o'r ddwy ochr.
x^{2}+6x-7=0
Tynnu 16 o 9 i gael -7.
a+b=6 ab=-7
Er mwyn datrys yr hafaliad, dylech ffactorio x^{2}+6x-7 gan ddefnyddio'r fformiwla x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). I ddod o hyd i a a b, gosodwch system i'w datrys.
a=-1 b=7
Gan fod ab yn negatif, mae gan a a b yr arwyddion croes. Gan fod a+b yn bositif, mae gan y rhif positif werth absoliwt mwy na'r negatif. Yr unig fath o bâr yw ateb y system.
\left(x-1\right)\left(x+7\right)
Ail-ysgrifennwch y mynegiant wedi'i ffactorio \left(x+a\right)\left(x+b\right) gan ddefnyddio'r gwerthoedd a gafwyd.
x=1 x=-7
I ddod o hyd i atebion hafaliad, datryswch x-1=0 a x+7=0.
x^{2}+6x+9=16
Defnyddio'r theorem binomaidd \left(a+b\right)^{2}=a^{2}+2ab+b^{2} i ehangu'r \left(x+3\right)^{2}.
x^{2}+6x+9-16=0
Tynnu 16 o'r ddwy ochr.
x^{2}+6x-7=0
Tynnu 16 o 9 i gael -7.
a+b=6 ab=1\left(-7\right)=-7
I ddatrys yr hafaliad, dylech ffactorio'r ochr chwith drwy grwpio. Yn gyntaf, mae angen ailysgrifennu'r ochr chwith fel x^{2}+ax+bx-7. I ddod o hyd i a a b, gosodwch system i'w datrys.
a=-1 b=7
Gan fod ab yn negatif, mae gan a a b yr arwyddion croes. Gan fod a+b yn bositif, mae gan y rhif positif werth absoliwt mwy na'r negatif. Yr unig fath o bâr yw ateb y system.
\left(x^{2}-x\right)+\left(7x-7\right)
Ailysgrifennwch x^{2}+6x-7 fel \left(x^{2}-x\right)+\left(7x-7\right).
x\left(x-1\right)+7\left(x-1\right)
Ni ddylech ffactorio x yn y cyntaf a 7 yn yr ail grŵp.
\left(x-1\right)\left(x+7\right)
Ffactoriwch y term cyffredin x-1 allan drwy ddefnyddio'r briodwedd ddosbarthol.
x=1 x=-7
I ddod o hyd i atebion hafaliad, datryswch x-1=0 a x+7=0.
x^{2}+6x+9=16
Defnyddio'r theorem binomaidd \left(a+b\right)^{2}=a^{2}+2ab+b^{2} i ehangu'r \left(x+3\right)^{2}.
x^{2}+6x+9-16=0
Tynnu 16 o'r ddwy ochr.
x^{2}+6x-7=0
Tynnu 16 o 9 i gael -7.
x=\frac{-6±\sqrt{6^{2}-4\left(-7\right)}}{2}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch 1 am a, 6 am b, a -7 am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\left(-7\right)}}{2}
Sgwâr 6.
x=\frac{-6±\sqrt{36+28}}{2}
Lluoswch -4 â -7.
x=\frac{-6±\sqrt{64}}{2}
Adio 36 at 28.
x=\frac{-6±8}{2}
Cymryd isradd 64.
x=\frac{2}{2}
Datryswch yr hafaliad x=\frac{-6±8}{2} pan fydd ± yn plws. Adio -6 at 8.
x=1
Rhannwch 2 â 2.
x=-\frac{14}{2}
Datryswch yr hafaliad x=\frac{-6±8}{2} pan fydd ± yn minws. Tynnu 8 o -6.
x=-7
Rhannwch -14 â 2.
x=1 x=-7
Mae’r hafaliad wedi’i ddatrys nawr.
\sqrt{\left(x+3\right)^{2}}=\sqrt{16}
Cymrwch isradd dwy ochr yr hafaliad.
x+3=4 x+3=-4
Symleiddio.
x=1 x=-7
Tynnu 3 o ddwy ochr yr hafaliad.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}