Enrhifo
\frac{\left(x-2\right)\left(x+3\right)}{x-1}
Gwahaniaethu w.r.t. x
\frac{x^{2}-2x+5}{\left(x-1\right)^{2}}
Graff
Rhannu
Copïo i clipfwrdd
\frac{\left(x+2\right)\left(x-1\right)}{x-1}-\frac{4}{x-1}
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluoswch x+2 â \frac{x-1}{x-1}.
\frac{\left(x+2\right)\left(x-1\right)-4}{x-1}
Gan fod gan \frac{\left(x+2\right)\left(x-1\right)}{x-1} a \frac{4}{x-1} yr un dynodydd, tynnwch nhw drwy dynnu eu rhifiaduron.
\frac{x^{2}-x+2x-2-4}{x-1}
Gwnewch y gwaith lluosi yn \left(x+2\right)\left(x-1\right)-4.
\frac{x^{2}+x-6}{x-1}
Cyfuno termau tebyg yn x^{2}-x+2x-2-4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x+2\right)\left(x-1\right)}{x-1}-\frac{4}{x-1})
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluoswch x+2 â \frac{x-1}{x-1}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x+2\right)\left(x-1\right)-4}{x-1})
Gan fod gan \frac{\left(x+2\right)\left(x-1\right)}{x-1} a \frac{4}{x-1} yr un dynodydd, tynnwch nhw drwy dynnu eu rhifiaduron.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}-x+2x-2-4}{x-1})
Gwnewch y gwaith lluosi yn \left(x+2\right)\left(x-1\right)-4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}+x-6}{x-1})
Cyfuno termau tebyg yn x^{2}-x+2x-2-4.
\frac{\left(x^{1}-1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+x^{1}-6)-\left(x^{2}+x^{1}-6\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-1)}{\left(x^{1}-1\right)^{2}}
Ar gyfer unrhyw ddau ffwythiant y mae modd eu gwahaniaethu, deilliad cyniferydd dau ffwythiant yw’r enwadur wedi’i luosi â deilliad yr enwadur wedi’i dynnu o’r rhifiadur wedi’i luosi â deilliad yr enwadur, y cwbl wedi’i rannu â’r enwadur wedi'i sgwario.
\frac{\left(x^{1}-1\right)\left(2x^{2-1}+x^{1-1}\right)-\left(x^{2}+x^{1}-6\right)x^{1-1}}{\left(x^{1}-1\right)^{2}}
Deilliad polynomaial yw swm deilliadau ei dermau. Deilliad term cyson yw 0. Y deilliad o ax^{n} yw nax^{n-1}.
\frac{\left(x^{1}-1\right)\left(2x^{1}+x^{0}\right)-\left(x^{2}+x^{1}-6\right)x^{0}}{\left(x^{1}-1\right)^{2}}
Symleiddio.
\frac{x^{1}\times 2x^{1}+x^{1}x^{0}-2x^{1}-x^{0}-\left(x^{2}+x^{1}-6\right)x^{0}}{\left(x^{1}-1\right)^{2}}
Lluoswch x^{1}-1 â 2x^{1}+x^{0}.
\frac{x^{1}\times 2x^{1}+x^{1}x^{0}-2x^{1}-x^{0}-\left(x^{2}x^{0}+x^{1}x^{0}-6x^{0}\right)}{\left(x^{1}-1\right)^{2}}
Lluoswch x^{2}+x^{1}-6 â x^{0}.
\frac{2x^{1+1}+x^{1}-2x^{1}-x^{0}-\left(x^{2}+x^{1}-6x^{0}\right)}{\left(x^{1}-1\right)^{2}}
I luosi pwerau sy’n rhannu’r un sail, ychwanegwch eu hesbonyddion.
\frac{2x^{2}+x^{1}-2x^{1}-x^{0}-\left(x^{2}+x^{1}-6x^{0}\right)}{\left(x^{1}-1\right)^{2}}
Symleiddio.
\frac{x^{2}-2x^{1}+5x^{0}}{\left(x^{1}-1\right)^{2}}
Cyfuno termau sydd yr un peth.
\frac{x^{2}-2x+5x^{0}}{\left(x-1\right)^{2}}
Ar gyfer unrhyw derm t, t^{1}=t.
\frac{x^{2}-2x+5\times 1}{\left(x-1\right)^{2}}
Ar gyfer unrhyw derm t ac eithrio 0, t^{0}=1.
\frac{x^{2}-2x+5}{\left(x-1\right)^{2}}
Ar gyfer unrhyw derm t, t\times 1=t a 1t=t.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}