Datrys ar gyfer x
x=-3
x=2
Graff
Rhannu
Copïo i clipfwrdd
x^{2}+4x+4-3\left(x+2\right)-4=0
Defnyddio'r theorem binomaidd \left(a+b\right)^{2}=a^{2}+2ab+b^{2} i ehangu'r \left(x+2\right)^{2}.
x^{2}+4x+4-3x-6-4=0
Defnyddio’r briodwedd ddosbarthu i luosi -3 â x+2.
x^{2}+x+4-6-4=0
Cyfuno 4x a -3x i gael x.
x^{2}+x-2-4=0
Tynnu 6 o 4 i gael -2.
x^{2}+x-6=0
Tynnu 4 o -2 i gael -6.
a+b=1 ab=-6
Er mwyn datrys yr hafaliad, dylech ffactorio x^{2}+x-6 gan ddefnyddio'r fformiwla x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). I ddod o hyd i a a b, gosodwch system i'w datrys.
-1,6 -2,3
Gan fod ab yn negatif, mae gan a a b yr arwyddion croes. Gan fod a+b yn bositif, mae gan y rhif positif werth absoliwt mwy na'r negatif. Rhestrwch bob pâr cyfanrif o'r fath sy'n rhoi'r cynnyrch -6.
-1+6=5 -2+3=1
Cyfrifo'r swm ar gyfer pob pâr.
a=-2 b=3
Yr ateb yw'r pâr sy'n rhoi'r swm 1.
\left(x-2\right)\left(x+3\right)
Ail-ysgrifennwch y mynegiant wedi'i ffactorio \left(x+a\right)\left(x+b\right) gan ddefnyddio'r gwerthoedd a gafwyd.
x=2 x=-3
I ddod o hyd i atebion hafaliad, datryswch x-2=0 a x+3=0.
x^{2}+4x+4-3\left(x+2\right)-4=0
Defnyddio'r theorem binomaidd \left(a+b\right)^{2}=a^{2}+2ab+b^{2} i ehangu'r \left(x+2\right)^{2}.
x^{2}+4x+4-3x-6-4=0
Defnyddio’r briodwedd ddosbarthu i luosi -3 â x+2.
x^{2}+x+4-6-4=0
Cyfuno 4x a -3x i gael x.
x^{2}+x-2-4=0
Tynnu 6 o 4 i gael -2.
x^{2}+x-6=0
Tynnu 4 o -2 i gael -6.
a+b=1 ab=1\left(-6\right)=-6
I ddatrys yr hafaliad, dylech ffactorio'r ochr chwith drwy grwpio. Yn gyntaf, mae angen ailysgrifennu'r ochr chwith fel x^{2}+ax+bx-6. I ddod o hyd i a a b, gosodwch system i'w datrys.
-1,6 -2,3
Gan fod ab yn negatif, mae gan a a b yr arwyddion croes. Gan fod a+b yn bositif, mae gan y rhif positif werth absoliwt mwy na'r negatif. Rhestrwch bob pâr cyfanrif o'r fath sy'n rhoi'r cynnyrch -6.
-1+6=5 -2+3=1
Cyfrifo'r swm ar gyfer pob pâr.
a=-2 b=3
Yr ateb yw'r pâr sy'n rhoi'r swm 1.
\left(x^{2}-2x\right)+\left(3x-6\right)
Ailysgrifennwch x^{2}+x-6 fel \left(x^{2}-2x\right)+\left(3x-6\right).
x\left(x-2\right)+3\left(x-2\right)
Ni ddylech ffactorio x yn y cyntaf a 3 yn yr ail grŵp.
\left(x-2\right)\left(x+3\right)
Ffactoriwch y term cyffredin x-2 allan drwy ddefnyddio'r briodwedd ddosbarthol.
x=2 x=-3
I ddod o hyd i atebion hafaliad, datryswch x-2=0 a x+3=0.
x^{2}+4x+4-3\left(x+2\right)-4=0
Defnyddio'r theorem binomaidd \left(a+b\right)^{2}=a^{2}+2ab+b^{2} i ehangu'r \left(x+2\right)^{2}.
x^{2}+4x+4-3x-6-4=0
Defnyddio’r briodwedd ddosbarthu i luosi -3 â x+2.
x^{2}+x+4-6-4=0
Cyfuno 4x a -3x i gael x.
x^{2}+x-2-4=0
Tynnu 6 o 4 i gael -2.
x^{2}+x-6=0
Tynnu 4 o -2 i gael -6.
x=\frac{-1±\sqrt{1^{2}-4\left(-6\right)}}{2}
Mae’r hafaliad hwn yn y ffurf safonol: ax^{2}+bx+c=0. Amnewidiwch 1 am a, 1 am b, a -6 am c yn y fformiwla gwadratig, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-6\right)}}{2}
Sgwâr 1.
x=\frac{-1±\sqrt{1+24}}{2}
Lluoswch -4 â -6.
x=\frac{-1±\sqrt{25}}{2}
Adio 1 at 24.
x=\frac{-1±5}{2}
Cymryd isradd 25.
x=\frac{4}{2}
Datryswch yr hafaliad x=\frac{-1±5}{2} pan fydd ± yn plws. Adio -1 at 5.
x=2
Rhannwch 4 â 2.
x=-\frac{6}{2}
Datryswch yr hafaliad x=\frac{-1±5}{2} pan fydd ± yn minws. Tynnu 5 o -1.
x=-3
Rhannwch -6 â 2.
x=2 x=-3
Mae’r hafaliad wedi’i ddatrys nawr.
x^{2}+4x+4-3\left(x+2\right)-4=0
Defnyddio'r theorem binomaidd \left(a+b\right)^{2}=a^{2}+2ab+b^{2} i ehangu'r \left(x+2\right)^{2}.
x^{2}+4x+4-3x-6-4=0
Defnyddio’r briodwedd ddosbarthu i luosi -3 â x+2.
x^{2}+x+4-6-4=0
Cyfuno 4x a -3x i gael x.
x^{2}+x-2-4=0
Tynnu 6 o 4 i gael -2.
x^{2}+x-6=0
Tynnu 4 o -2 i gael -6.
x^{2}+x=6
Ychwanegu 6 at y ddwy ochr. Mae adio unrhyw beth at sero yn cyrraedd ei swm ei hun.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=6+\left(\frac{1}{2}\right)^{2}
Rhannwch 1, cyfernod y term x, â 2 i gael \frac{1}{2}. Yna ychwanegwch sgwâr \frac{1}{2} at ddwy ochr yr hafaliad. Mae'r cam hwn yn gwneud ochr chwith yr hafaliad yn sgwâr perffaith.
x^{2}+x+\frac{1}{4}=6+\frac{1}{4}
Sgwariwch \frac{1}{2} drwy sgwario'r rhifiadur ag enwadur y ffracsiwn.
x^{2}+x+\frac{1}{4}=\frac{25}{4}
Adio 6 at \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{25}{4}
Ffactora x^{2}+x+\frac{1}{4}. Yn gyffredinol, pan fydd x^{2}+bx+c yn sgwâr perffaith, mae modd ei ffactora bob amser fel \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Cymrwch isradd dwy ochr yr hafaliad.
x+\frac{1}{2}=\frac{5}{2} x+\frac{1}{2}=-\frac{5}{2}
Symleiddio.
x=2 x=-3
Tynnu \frac{1}{2} o ddwy ochr yr hafaliad.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}