Enrhifo
4a
Ehangu
4a
Rhannu
Copïo i clipfwrdd
4a^{2}+4a+1-\left(2a-2\right)\left(2a+2\right)-5
Defnyddio'r theorem binomaidd \left(p+q\right)^{2}=p^{2}+2pq+q^{2} i ehangu'r \left(2a+1\right)^{2}.
4a^{2}+4a+1-\left(\left(2a\right)^{2}-4\right)-5
Ystyriwch \left(2a-2\right)\left(2a+2\right). Gellir trawsnewid lluosi yn wahaniaeth rhwng sgwariau drwy ddefnyddio’r rheol: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Sgwâr 2.
4a^{2}+4a+1-\left(2^{2}a^{2}-4\right)-5
Ehangu \left(2a\right)^{2}.
4a^{2}+4a+1-\left(4a^{2}-4\right)-5
Cyfrifo 2 i bŵer 2 a chael 4.
4a^{2}+4a+1-4a^{2}+4-5
I ddod o hyd i wrthwyneb 4a^{2}-4, dewch o hyd i wrthwyneb pob term.
4a+1+4-5
Cyfuno 4a^{2} a -4a^{2} i gael 0.
4a+5-5
Adio 1 a 4 i gael 5.
4a
Tynnu 5 o 5 i gael 0.
4a^{2}+4a+1-\left(2a-2\right)\left(2a+2\right)-5
Defnyddio'r theorem binomaidd \left(p+q\right)^{2}=p^{2}+2pq+q^{2} i ehangu'r \left(2a+1\right)^{2}.
4a^{2}+4a+1-\left(\left(2a\right)^{2}-4\right)-5
Ystyriwch \left(2a-2\right)\left(2a+2\right). Gellir trawsnewid lluosi yn wahaniaeth rhwng sgwariau drwy ddefnyddio’r rheol: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Sgwâr 2.
4a^{2}+4a+1-\left(2^{2}a^{2}-4\right)-5
Ehangu \left(2a\right)^{2}.
4a^{2}+4a+1-\left(4a^{2}-4\right)-5
Cyfrifo 2 i bŵer 2 a chael 4.
4a^{2}+4a+1-4a^{2}+4-5
I ddod o hyd i wrthwyneb 4a^{2}-4, dewch o hyd i wrthwyneb pob term.
4a+1+4-5
Cyfuno 4a^{2} a -4a^{2} i gael 0.
4a+5-5
Adio 1 a 4 i gael 5.
4a
Tynnu 5 o 5 i gael 0.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}