Enrhifo
14-8\sqrt{3}\approx 0.143593539
Ehangu
14-8\sqrt{3}
Rhannu
Copïo i clipfwrdd
4\left(\sqrt{2}\right)^{2}-4\sqrt{2}\sqrt{6}+\left(\sqrt{6}\right)^{2}
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(2\sqrt{2}-\sqrt{6}\right)^{2}.
4\times 2-4\sqrt{2}\sqrt{6}+\left(\sqrt{6}\right)^{2}
Sgwâr \sqrt{2} yw 2.
8-4\sqrt{2}\sqrt{6}+\left(\sqrt{6}\right)^{2}
Lluosi 4 a 2 i gael 8.
8-4\sqrt{2}\sqrt{2}\sqrt{3}+\left(\sqrt{6}\right)^{2}
Ffactora 6=2\times 3. Ailysgrifennu ail isradd y lluoswm \sqrt{2\times 3} fel lluoswm ail israddau \sqrt{2}\sqrt{3}.
8-4\times 2\sqrt{3}+\left(\sqrt{6}\right)^{2}
Lluosi \sqrt{2} a \sqrt{2} i gael 2.
8-8\sqrt{3}+\left(\sqrt{6}\right)^{2}
Lluosi -4 a 2 i gael -8.
8-8\sqrt{3}+6
Sgwâr \sqrt{6} yw 6.
14-8\sqrt{3}
Adio 8 a 6 i gael 14.
4\left(\sqrt{2}\right)^{2}-4\sqrt{2}\sqrt{6}+\left(\sqrt{6}\right)^{2}
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(2\sqrt{2}-\sqrt{6}\right)^{2}.
4\times 2-4\sqrt{2}\sqrt{6}+\left(\sqrt{6}\right)^{2}
Sgwâr \sqrt{2} yw 2.
8-4\sqrt{2}\sqrt{6}+\left(\sqrt{6}\right)^{2}
Lluosi 4 a 2 i gael 8.
8-4\sqrt{2}\sqrt{2}\sqrt{3}+\left(\sqrt{6}\right)^{2}
Ffactora 6=2\times 3. Ailysgrifennu ail isradd y lluoswm \sqrt{2\times 3} fel lluoswm ail israddau \sqrt{2}\sqrt{3}.
8-4\times 2\sqrt{3}+\left(\sqrt{6}\right)^{2}
Lluosi \sqrt{2} a \sqrt{2} i gael 2.
8-8\sqrt{3}+\left(\sqrt{6}\right)^{2}
Lluosi -4 a 2 i gael -8.
8-8\sqrt{3}+6
Sgwâr \sqrt{6} yw 6.
14-8\sqrt{3}
Adio 8 a 6 i gael 14.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}