Datrys ar gyfer Y
Y=\frac{1}{3\alpha }
\alpha \neq 0
Datrys ar gyfer α
\alpha =\frac{1}{3Y}
Y\neq 0
Rhannu
Copïo i clipfwrdd
6\alpha Y=2
Lluosi 2 a 3 i gael 6.
\frac{6\alpha Y}{6\alpha }=\frac{2}{6\alpha }
Rhannu’r ddwy ochr â 6\alpha .
Y=\frac{2}{6\alpha }
Mae rhannu â 6\alpha yn dad-wneud lluosi â 6\alpha .
Y=\frac{1}{3\alpha }
Rhannwch 2 â 6\alpha .
6\alpha Y=2
Lluosi 2 a 3 i gael 6.
6Y\alpha =2
Mae'r hafaliad yn y ffurf safonol.
\frac{6Y\alpha }{6Y}=\frac{2}{6Y}
Rhannu’r ddwy ochr â 6Y.
\alpha =\frac{2}{6Y}
Mae rhannu â 6Y yn dad-wneud lluosi â 6Y.
\alpha =\frac{1}{3Y}
Rhannwch 2 â 6Y.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}