Datrys ar gyfer M
\left\{\begin{matrix}M=\frac{10m^{2}}{v_{1}}\text{, }&v_{1}\neq 0\\M\in \mathrm{R}\text{, }&m=0\end{matrix}\right.
Datrys ar gyfer m
\left\{\begin{matrix}\\m=0\text{, }&\text{unconditionally}\\m=\frac{\sqrt{10Mv_{1}}}{10}\text{; }m=-\frac{\sqrt{10Mv_{1}}}{10}\text{, }&\left(v_{1}\geq 0\text{ and }M\geq 0\right)\text{ or }\left(M\leq 0\text{ and }v_{1}\leq 0\right)\end{matrix}\right.
Rhannu
Copïo i clipfwrdd
mMv_{1}=mm\times 10m
Rhaid i chi ganslo 10 allan ar y ddwy ochr.
mMv_{1}=m^{2}\times 10m
Lluosi m a m i gael m^{2}.
mMv_{1}=m^{3}\times 10
Er mwyn lluosi pwerau sy’n rhannu’r un sail, adiwch eu esbonyddion. Adiwch 2 a 1 i gael 3.
mv_{1}M=10m^{3}
Mae'r hafaliad yn y ffurf safonol.
\frac{mv_{1}M}{mv_{1}}=\frac{10m^{3}}{mv_{1}}
Rhannu’r ddwy ochr â mv_{1}.
M=\frac{10m^{3}}{mv_{1}}
Mae rhannu â mv_{1} yn dad-wneud lluosi â mv_{1}.
M=\frac{10m^{2}}{v_{1}}
Rhannwch 10m^{3} â mv_{1}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}