Neidio i'r prif gynnwys
Enrhifo
Tick mark Image
Ehangu
Tick mark Image

Problemau tebyg o chwiliad gwe

Rhannu

1-\frac{1}{2}a+8\left(a^{2}-\frac{1}{2}a+\frac{1}{16}\right)+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Defnyddio'r theorem binomaidd \left(p-q\right)^{2}=p^{2}-2pq+q^{2} i ehangu'r \left(a-\frac{1}{4}\right)^{2}.
1-\frac{1}{2}a+8a^{2}-4a+\frac{1}{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Defnyddio’r briodwedd ddosbarthu i luosi 8 â a^{2}-\frac{1}{2}a+\frac{1}{16}.
1-\frac{9}{2}a+8a^{2}+\frac{1}{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Cyfuno -\frac{1}{2}a a -4a i gael -\frac{9}{2}a.
\frac{3}{2}-\frac{9}{2}a+8a^{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Adio 1 a \frac{1}{2} i gael \frac{3}{2}.
\frac{3}{2}-\frac{9}{2}a+8a^{2}+\left(\frac{3}{2}a\right)^{2}-1+5a
Ystyriwch \left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right). Gellir trawsnewid lluosi yn wahaniaeth rhwng sgwariau drwy ddefnyddio’r rheol: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Sgwâr 1.
\frac{3}{2}-\frac{9}{2}a+8a^{2}+\left(\frac{3}{2}\right)^{2}a^{2}-1+5a
Ehangu \left(\frac{3}{2}a\right)^{2}.
\frac{3}{2}-\frac{9}{2}a+8a^{2}+\frac{9}{4}a^{2}-1+5a
Cyfrifo \frac{3}{2} i bŵer 2 a chael \frac{9}{4}.
\frac{3}{2}-\frac{9}{2}a+\frac{41}{4}a^{2}-1+5a
Cyfuno 8a^{2} a \frac{9}{4}a^{2} i gael \frac{41}{4}a^{2}.
\frac{1}{2}-\frac{9}{2}a+\frac{41}{4}a^{2}+5a
Tynnu 1 o \frac{3}{2} i gael \frac{1}{2}.
\frac{1}{2}+\frac{1}{2}a+\frac{41}{4}a^{2}
Cyfuno -\frac{9}{2}a a 5a i gael \frac{1}{2}a.
1-\frac{1}{2}a+8\left(a^{2}-\frac{1}{2}a+\frac{1}{16}\right)+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Defnyddio'r theorem binomaidd \left(p-q\right)^{2}=p^{2}-2pq+q^{2} i ehangu'r \left(a-\frac{1}{4}\right)^{2}.
1-\frac{1}{2}a+8a^{2}-4a+\frac{1}{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Defnyddio’r briodwedd ddosbarthu i luosi 8 â a^{2}-\frac{1}{2}a+\frac{1}{16}.
1-\frac{9}{2}a+8a^{2}+\frac{1}{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Cyfuno -\frac{1}{2}a a -4a i gael -\frac{9}{2}a.
\frac{3}{2}-\frac{9}{2}a+8a^{2}+\left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right)+5a
Adio 1 a \frac{1}{2} i gael \frac{3}{2}.
\frac{3}{2}-\frac{9}{2}a+8a^{2}+\left(\frac{3}{2}a\right)^{2}-1+5a
Ystyriwch \left(\frac{3}{2}a+1\right)\left(\frac{3}{2}a-1\right). Gellir trawsnewid lluosi yn wahaniaeth rhwng sgwariau drwy ddefnyddio’r rheol: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Sgwâr 1.
\frac{3}{2}-\frac{9}{2}a+8a^{2}+\left(\frac{3}{2}\right)^{2}a^{2}-1+5a
Ehangu \left(\frac{3}{2}a\right)^{2}.
\frac{3}{2}-\frac{9}{2}a+8a^{2}+\frac{9}{4}a^{2}-1+5a
Cyfrifo \frac{3}{2} i bŵer 2 a chael \frac{9}{4}.
\frac{3}{2}-\frac{9}{2}a+\frac{41}{4}a^{2}-1+5a
Cyfuno 8a^{2} a \frac{9}{4}a^{2} i gael \frac{41}{4}a^{2}.
\frac{1}{2}-\frac{9}{2}a+\frac{41}{4}a^{2}+5a
Tynnu 1 o \frac{3}{2} i gael \frac{1}{2}.
\frac{1}{2}+\frac{1}{2}a+\frac{41}{4}a^{2}
Cyfuno -\frac{9}{2}a a 5a i gael \frac{1}{2}a.