Enrhifo
2\sqrt{3}\approx 3.464101615
Rhannu
Copïo i clipfwrdd
2+3\sqrt{2}-\sqrt{6}+\left(\sqrt{2}\right)^{2}-\sqrt{2}\sqrt{6}+2\sqrt{3}+\sqrt{3}\sqrt{2}-\sqrt{3}\sqrt{6}-\left(\sqrt{3}-1\right)^{2}
Defnyddio’r briodwedd ddosbarthu i luosi 1+\sqrt{2}+\sqrt{3} â 2+\sqrt{2}-\sqrt{6} a chyfuno termau tebyg.
2+3\sqrt{2}-\sqrt{6}+2-\sqrt{2}\sqrt{6}+2\sqrt{3}+\sqrt{3}\sqrt{2}-\sqrt{3}\sqrt{6}-\left(\sqrt{3}-1\right)^{2}
Sgwâr \sqrt{2} yw 2.
4+3\sqrt{2}-\sqrt{6}-\sqrt{2}\sqrt{6}+2\sqrt{3}+\sqrt{3}\sqrt{2}-\sqrt{3}\sqrt{6}-\left(\sqrt{3}-1\right)^{2}
Adio 2 a 2 i gael 4.
4+3\sqrt{2}-\sqrt{6}-\sqrt{2}\sqrt{2}\sqrt{3}+2\sqrt{3}+\sqrt{3}\sqrt{2}-\sqrt{3}\sqrt{6}-\left(\sqrt{3}-1\right)^{2}
Ffactora 6=2\times 3. Ailysgrifennu ail isradd y lluoswm \sqrt{2\times 3} fel lluoswm ail israddau \sqrt{2}\sqrt{3}.
4+3\sqrt{2}-\sqrt{6}-2\sqrt{3}+2\sqrt{3}+\sqrt{3}\sqrt{2}-\sqrt{3}\sqrt{6}-\left(\sqrt{3}-1\right)^{2}
Lluosi \sqrt{2} a \sqrt{2} i gael 2.
4+3\sqrt{2}-\sqrt{6}+\sqrt{3}\sqrt{2}-\sqrt{3}\sqrt{6}-\left(\sqrt{3}-1\right)^{2}
Cyfuno -2\sqrt{3} a 2\sqrt{3} i gael 0.
4+3\sqrt{2}-\sqrt{6}+\sqrt{6}-\sqrt{3}\sqrt{6}-\left(\sqrt{3}-1\right)^{2}
I luosi \sqrt{3} a \sqrt{2}, dylid lluosi'r rhifau dan yr ail isradd.
4+3\sqrt{2}-\sqrt{3}\sqrt{6}-\left(\sqrt{3}-1\right)^{2}
Cyfuno -\sqrt{6} a \sqrt{6} i gael 0.
4+3\sqrt{2}-\sqrt{3}\sqrt{3}\sqrt{2}-\left(\sqrt{3}-1\right)^{2}
Ffactora 6=3\times 2. Ailysgrifennu ail isradd y lluoswm \sqrt{3\times 2} fel lluoswm ail israddau \sqrt{3}\sqrt{2}.
4+3\sqrt{2}-3\sqrt{2}-\left(\sqrt{3}-1\right)^{2}
Lluosi \sqrt{3} a \sqrt{3} i gael 3.
4-\left(\sqrt{3}-1\right)^{2}
Cyfuno 3\sqrt{2} a -3\sqrt{2} i gael 0.
4-\left(\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1\right)
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(\sqrt{3}-1\right)^{2}.
4-\left(3-2\sqrt{3}+1\right)
Sgwâr \sqrt{3} yw 3.
4-\left(4-2\sqrt{3}\right)
Adio 3 a 1 i gael 4.
4-4+2\sqrt{3}
I ddod o hyd i wrthwyneb 4-2\sqrt{3}, dewch o hyd i wrthwyneb pob term.
2\sqrt{3}
Tynnu 4 o 4 i gael 0.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}