Enrhifo
\left(2x-1\right)\left(x^{2}+9x+2\right)
Ffactor
\left(2x-1\right)\left(x^{2}+9x+2\right)
Graff
Rhannu
Copïo i clipfwrdd
2x^{3}+10x^{2}-3x+2+7x^{2}-2x-4
Cyfuno -2x^{3} a 4x^{3} i gael 2x^{3}.
2x^{3}+17x^{2}-3x+2-2x-4
Cyfuno 10x^{2} a 7x^{2} i gael 17x^{2}.
2x^{3}+17x^{2}-5x+2-4
Cyfuno -3x a -2x i gael -5x.
2x^{3}+17x^{2}-5x-2
Tynnu 4 o 2 i gael -2.
2x^{3}+17x^{2}-5x-2
Lluosi a chyfuno termau sydd yr un fath.
\left(2x-1\right)\left(x^{2}+9x+2\right)
Yn ôl y Theorem Gwraidd Rhesymegol, mae gwreiddiau rhesymegol pob polynomial yn y ffurf \frac{p}{q}, lle mae p yn rhannu'r term cyson -2 ac mae q yn rhannu'r cyfernod arweiniol 2. Un gwraidd o'r fath yw \frac{1}{2}. Ffactoriwch y polynomial drwy ei rannu â 2x-1. Nid yw'r polynomial x^{2}+9x+2 yn cael ei ffactorio oherwydd does dim gwreiddiau rhesymegol ganddo.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}