Neidio i'r prif gynnwys
Enrhifo
Tick mark Image
Ehangu
Tick mark Image

Problemau tebyg o chwiliad gwe

Rhannu

\left(n^{2}+2n+1-1\right)^{2}+\left(2n+2\right)^{2}
Defnyddio'r theorem binomaidd \left(a+b\right)^{2}=a^{2}+2ab+b^{2} i ehangu'r \left(n+1\right)^{2}.
\left(n^{2}+2n\right)^{2}+\left(2n+2\right)^{2}
Tynnu 1 o 1 i gael 0.
\left(n^{2}\right)^{2}+4n^{2}n+4n^{2}+\left(2n+2\right)^{2}
Defnyddio'r theorem binomaidd \left(a+b\right)^{2}=a^{2}+2ab+b^{2} i ehangu'r \left(n^{2}+2n\right)^{2}.
n^{4}+4n^{2}n+4n^{2}+\left(2n+2\right)^{2}
I godi pŵer rhif i bŵer arall, lluoswch yr esbonyddion. Lluoswch 2 a 2 i gael 4.
n^{4}+4n^{3}+4n^{2}+\left(2n+2\right)^{2}
Er mwyn lluosi pwerau sy’n rhannu’r un sail, adiwch eu esbonyddion. Adiwch 2 a 1 i gael 3.
n^{4}+4n^{3}+4n^{2}+4n^{2}+8n+4
Defnyddio'r theorem binomaidd \left(a+b\right)^{2}=a^{2}+2ab+b^{2} i ehangu'r \left(2n+2\right)^{2}.
n^{4}+4n^{3}+8n^{2}+8n+4
Cyfuno 4n^{2} a 4n^{2} i gael 8n^{2}.
\left(n^{2}+2n+1-1\right)^{2}+\left(2n+2\right)^{2}
Defnyddio'r theorem binomaidd \left(a+b\right)^{2}=a^{2}+2ab+b^{2} i ehangu'r \left(n+1\right)^{2}.
\left(n^{2}+2n\right)^{2}+\left(2n+2\right)^{2}
Tynnu 1 o 1 i gael 0.
\left(n^{2}\right)^{2}+4n^{2}n+4n^{2}+\left(2n+2\right)^{2}
Defnyddio'r theorem binomaidd \left(a+b\right)^{2}=a^{2}+2ab+b^{2} i ehangu'r \left(n^{2}+2n\right)^{2}.
n^{4}+4n^{2}n+4n^{2}+\left(2n+2\right)^{2}
I godi pŵer rhif i bŵer arall, lluoswch yr esbonyddion. Lluoswch 2 a 2 i gael 4.
n^{4}+4n^{3}+4n^{2}+\left(2n+2\right)^{2}
Er mwyn lluosi pwerau sy’n rhannu’r un sail, adiwch eu esbonyddion. Adiwch 2 a 1 i gael 3.
n^{4}+4n^{3}+4n^{2}+4n^{2}+8n+4
Defnyddio'r theorem binomaidd \left(a+b\right)^{2}=a^{2}+2ab+b^{2} i ehangu'r \left(2n+2\right)^{2}.
n^{4}+4n^{3}+8n^{2}+8n+4
Cyfuno 4n^{2} a 4n^{2} i gael 8n^{2}.