Neidio i'r prif gynnwys
Enrhifo
Tick mark Image
Ffactor
Tick mark Image

Problemau tebyg o chwiliad gwe

Rhannu

\left(\sqrt{6}\right)^{2}-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}-\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(\sqrt{6}-\sqrt{2}\right)^{2}.
6-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}-\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}
Sgwâr \sqrt{6} yw 6.
6-2\sqrt{2}\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}-\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}
Ffactora 6=2\times 3. Ailysgrifennu ail isradd y lluoswm \sqrt{2\times 3} fel lluoswm ail israddau \sqrt{2}\sqrt{3}.
6-2\times 2\sqrt{3}+\left(\sqrt{2}\right)^{2}-\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}
Lluosi \sqrt{2} a \sqrt{2} i gael 2.
6-4\sqrt{3}+\left(\sqrt{2}\right)^{2}-\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}
Lluosi -2 a 2 i gael -4.
6-4\sqrt{3}+2-\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}
Sgwâr \sqrt{2} yw 2.
8-4\sqrt{3}-\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}
Adio 6 a 2 i gael 8.
8-4\sqrt{3}-\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}{\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}
Mae'n rhesymoli enwadur \frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}} drwy luosi'r rhifiadur a'r enwadur â \sqrt{6}-\sqrt{2}.
8-4\sqrt{3}-\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}{\left(\sqrt{6}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Ystyriwch \left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right). Gellir trawsnewid lluosi yn wahaniaeth rhwng sgwariau drwy ddefnyddio’r rheol: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
8-4\sqrt{3}-\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}{6-2}
Sgwâr \sqrt{6}. Sgwâr \sqrt{2}.
8-4\sqrt{3}-\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}{4}
Tynnu 2 o 6 i gael 4.
8-4\sqrt{3}-\frac{\left(\sqrt{6}-\sqrt{2}\right)^{2}}{4}
Lluosi \sqrt{6}-\sqrt{2} a \sqrt{6}-\sqrt{2} i gael \left(\sqrt{6}-\sqrt{2}\right)^{2}.
8-4\sqrt{3}-\frac{\left(\sqrt{6}\right)^{2}-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4}
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(\sqrt{6}-\sqrt{2}\right)^{2}.
8-4\sqrt{3}-\frac{6-2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4}
Sgwâr \sqrt{6} yw 6.
8-4\sqrt{3}-\frac{6-2\sqrt{2}\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{4}
Ffactora 6=2\times 3. Ailysgrifennu ail isradd y lluoswm \sqrt{2\times 3} fel lluoswm ail israddau \sqrt{2}\sqrt{3}.
8-4\sqrt{3}-\frac{6-2\times 2\sqrt{3}+\left(\sqrt{2}\right)^{2}}{4}
Lluosi \sqrt{2} a \sqrt{2} i gael 2.
8-4\sqrt{3}-\frac{6-4\sqrt{3}+\left(\sqrt{2}\right)^{2}}{4}
Lluosi -2 a 2 i gael -4.
8-4\sqrt{3}-\frac{6-4\sqrt{3}+2}{4}
Sgwâr \sqrt{2} yw 2.
8-4\sqrt{3}-\frac{8-4\sqrt{3}}{4}
Adio 6 a 2 i gael 8.
8-4\sqrt{3}-\left(2-\sqrt{3}\right)
Rhannu pob term 8-4\sqrt{3} â 4 i gael 2-\sqrt{3}.
8-4\sqrt{3}-2+\sqrt{3}
I ddod o hyd i wrthwyneb 2-\sqrt{3}, dewch o hyd i wrthwyneb pob term.
6-4\sqrt{3}+\sqrt{3}
Tynnu 2 o 8 i gael 6.
6-3\sqrt{3}
Cyfuno -4\sqrt{3} a \sqrt{3} i gael -3\sqrt{3}.