Enrhifo
\sqrt{10}\approx 3.16227766
Rhannu
Copïo i clipfwrdd
\left(\sqrt{2}\right)^{2}+2\sqrt{2}\sqrt{5}+\left(\sqrt{5}\right)^{2}-\left(2+\sqrt{10}\right)^{2}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Defnyddio'r theorem binomaidd \left(a+b\right)^{2}=a^{2}+2ab+b^{2} i ehangu'r \left(\sqrt{2}+\sqrt{5}\right)^{2}.
2+2\sqrt{2}\sqrt{5}+\left(\sqrt{5}\right)^{2}-\left(2+\sqrt{10}\right)^{2}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Sgwâr \sqrt{2} yw 2.
2+2\sqrt{10}+\left(\sqrt{5}\right)^{2}-\left(2+\sqrt{10}\right)^{2}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
I luosi \sqrt{2} a \sqrt{5}, dylid lluosi'r rhifau dan yr ail isradd.
2+2\sqrt{10}+5-\left(2+\sqrt{10}\right)^{2}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Sgwâr \sqrt{5} yw 5.
7+2\sqrt{10}-\left(2+\sqrt{10}\right)^{2}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Adio 2 a 5 i gael 7.
7+2\sqrt{10}-\left(4+4\sqrt{10}+\left(\sqrt{10}\right)^{2}\right)+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Defnyddio'r theorem binomaidd \left(a+b\right)^{2}=a^{2}+2ab+b^{2} i ehangu'r \left(2+\sqrt{10}\right)^{2}.
7+2\sqrt{10}-\left(4+4\sqrt{10}+10\right)+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Sgwâr \sqrt{10} yw 10.
7+2\sqrt{10}-\left(14+4\sqrt{10}\right)+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Adio 4 a 10 i gael 14.
7+2\sqrt{10}-14-4\sqrt{10}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
I ddod o hyd i wrthwyneb 14+4\sqrt{10}, dewch o hyd i wrthwyneb pob term.
-7+2\sqrt{10}-4\sqrt{10}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Tynnu 14 o 7 i gael -7.
-7-2\sqrt{10}+\sqrt{90}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Cyfuno 2\sqrt{10} a -4\sqrt{10} i gael -2\sqrt{10}.
-7-2\sqrt{10}+3\sqrt{10}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Ffactora 90=3^{2}\times 10. Ailysgrifennu ail isradd y lluoswm \sqrt{3^{2}\times 10} fel lluoswm ail israddau \sqrt{3^{2}}\sqrt{10}. Cymryd isradd 3^{2}.
-7+\sqrt{10}+\left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right)
Cyfuno -2\sqrt{10} a 3\sqrt{10} i gael \sqrt{10}.
-7+\sqrt{10}+\left(2\sqrt{2}\right)^{2}-1
Ystyriwch \left(2\sqrt{2}-1\right)\left(2\sqrt{2}+1\right). Gellir trawsnewid lluosi yn wahaniaeth rhwng sgwariau drwy ddefnyddio’r rheol: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Sgwâr 1.
-7+\sqrt{10}+2^{2}\left(\sqrt{2}\right)^{2}-1
Ehangu \left(2\sqrt{2}\right)^{2}.
-7+\sqrt{10}+4\left(\sqrt{2}\right)^{2}-1
Cyfrifo 2 i bŵer 2 a chael 4.
-7+\sqrt{10}+4\times 2-1
Sgwâr \sqrt{2} yw 2.
-7+\sqrt{10}+8-1
Lluosi 4 a 2 i gael 8.
-7+\sqrt{10}+7
Tynnu 1 o 8 i gael 7.
\sqrt{10}
Adio -7 a 7 i gael 0.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}