Enrhifo
\frac{x}{x-y}
Ehangu
-\frac{x}{y-x}
Rhannu
Copïo i clipfwrdd
\left(\frac{x}{x-y}+\frac{2xy}{\left(x-y\right)^{2}}\right)\left(\frac{2x}{x+y}-1\right)
Ffactora x^{2}-2xy+y^{2}.
\left(\frac{x\left(x-y\right)^{2}}{\left(x-y\right)\left(x-y\right)^{2}}+\frac{2xy\left(x-y\right)}{\left(x-y\right)\left(x-y\right)^{2}}\right)\left(\frac{2x}{x+y}-1\right)
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluosrif lleiaf cyffredin x-y a \left(x-y\right)^{2} yw \left(x-y\right)\left(x-y\right)^{2}. Lluoswch \frac{x}{x-y} â \frac{\left(x-y\right)^{2}}{\left(x-y\right)^{2}}. Lluoswch \frac{2xy}{\left(x-y\right)^{2}} â \frac{x-y}{x-y}.
\frac{x\left(x-y\right)^{2}+2xy\left(x-y\right)}{\left(x-y\right)\left(x-y\right)^{2}}\left(\frac{2x}{x+y}-1\right)
Gan fod gan \frac{x\left(x-y\right)^{2}}{\left(x-y\right)\left(x-y\right)^{2}} a \frac{2xy\left(x-y\right)}{\left(x-y\right)\left(x-y\right)^{2}} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
\frac{x^{3}-2x^{2}y+xy^{2}+2x^{2}y-2xy^{2}}{\left(x-y\right)\left(x-y\right)^{2}}\left(\frac{2x}{x+y}-1\right)
Gwnewch y gwaith lluosi yn x\left(x-y\right)^{2}+2xy\left(x-y\right).
\frac{x^{3}-xy^{2}}{\left(x-y\right)\left(x-y\right)^{2}}\left(\frac{2x}{x+y}-1\right)
Cyfuno termau tebyg yn x^{3}-2x^{2}y+xy^{2}+2x^{2}y-2xy^{2}.
\frac{x\left(x+y\right)\left(x-y\right)}{\left(x-y\right)\left(x-y\right)^{2}}\left(\frac{2x}{x+y}-1\right)
Dylech ffactoreiddio'r mynegiadau sydd heb eu ffactoreiddio eisoes yn \frac{x^{3}-xy^{2}}{\left(x-y\right)\left(x-y\right)^{2}}.
\frac{x\left(x+y\right)}{\left(x-y\right)^{2}}\left(\frac{2x}{x+y}-1\right)
Canslo x-y yn y rhifiadur a'r enwadur.
\frac{x\left(x+y\right)}{\left(x-y\right)^{2}}\left(\frac{2x}{x+y}-\frac{x+y}{x+y}\right)
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluoswch 1 â \frac{x+y}{x+y}.
\frac{x\left(x+y\right)}{\left(x-y\right)^{2}}\times \frac{2x-\left(x+y\right)}{x+y}
Gan fod gan \frac{2x}{x+y} a \frac{x+y}{x+y} yr un dynodydd, tynnwch nhw drwy dynnu eu rhifiaduron.
\frac{x\left(x+y\right)}{\left(x-y\right)^{2}}\times \frac{2x-x-y}{x+y}
Gwnewch y gwaith lluosi yn 2x-\left(x+y\right).
\frac{x\left(x+y\right)}{\left(x-y\right)^{2}}\times \frac{x-y}{x+y}
Cyfuno termau tebyg yn 2x-x-y.
\frac{x\left(x+y\right)\left(x-y\right)}{\left(x-y\right)^{2}\left(x+y\right)}
Lluoswch \frac{x\left(x+y\right)}{\left(x-y\right)^{2}} â \frac{x-y}{x+y} drwy luosi'r rhifiadur â’r rhifiadur a'r enwadur â’r enwadur.
\frac{x}{x-y}
Canslo \left(x+y\right)\left(x-y\right) yn y rhifiadur a'r enwadur.
\left(\frac{x}{x-y}+\frac{2xy}{\left(x-y\right)^{2}}\right)\left(\frac{2x}{x+y}-1\right)
Ffactora x^{2}-2xy+y^{2}.
\left(\frac{x\left(x-y\right)^{2}}{\left(x-y\right)\left(x-y\right)^{2}}+\frac{2xy\left(x-y\right)}{\left(x-y\right)\left(x-y\right)^{2}}\right)\left(\frac{2x}{x+y}-1\right)
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluosrif lleiaf cyffredin x-y a \left(x-y\right)^{2} yw \left(x-y\right)\left(x-y\right)^{2}. Lluoswch \frac{x}{x-y} â \frac{\left(x-y\right)^{2}}{\left(x-y\right)^{2}}. Lluoswch \frac{2xy}{\left(x-y\right)^{2}} â \frac{x-y}{x-y}.
\frac{x\left(x-y\right)^{2}+2xy\left(x-y\right)}{\left(x-y\right)\left(x-y\right)^{2}}\left(\frac{2x}{x+y}-1\right)
Gan fod gan \frac{x\left(x-y\right)^{2}}{\left(x-y\right)\left(x-y\right)^{2}} a \frac{2xy\left(x-y\right)}{\left(x-y\right)\left(x-y\right)^{2}} yr un dynodydd, adiwch nhw drwy adio eu rhifiaduron.
\frac{x^{3}-2x^{2}y+xy^{2}+2x^{2}y-2xy^{2}}{\left(x-y\right)\left(x-y\right)^{2}}\left(\frac{2x}{x+y}-1\right)
Gwnewch y gwaith lluosi yn x\left(x-y\right)^{2}+2xy\left(x-y\right).
\frac{x^{3}-xy^{2}}{\left(x-y\right)\left(x-y\right)^{2}}\left(\frac{2x}{x+y}-1\right)
Cyfuno termau tebyg yn x^{3}-2x^{2}y+xy^{2}+2x^{2}y-2xy^{2}.
\frac{x\left(x+y\right)\left(x-y\right)}{\left(x-y\right)\left(x-y\right)^{2}}\left(\frac{2x}{x+y}-1\right)
Dylech ffactoreiddio'r mynegiadau sydd heb eu ffactoreiddio eisoes yn \frac{x^{3}-xy^{2}}{\left(x-y\right)\left(x-y\right)^{2}}.
\frac{x\left(x+y\right)}{\left(x-y\right)^{2}}\left(\frac{2x}{x+y}-1\right)
Canslo x-y yn y rhifiadur a'r enwadur.
\frac{x\left(x+y\right)}{\left(x-y\right)^{2}}\left(\frac{2x}{x+y}-\frac{x+y}{x+y}\right)
I ychwanegu neu dynnu mynegiannau, rhaid i chi eu ehangu i wneud eu enwaduron yr un fath. Lluoswch 1 â \frac{x+y}{x+y}.
\frac{x\left(x+y\right)}{\left(x-y\right)^{2}}\times \frac{2x-\left(x+y\right)}{x+y}
Gan fod gan \frac{2x}{x+y} a \frac{x+y}{x+y} yr un dynodydd, tynnwch nhw drwy dynnu eu rhifiaduron.
\frac{x\left(x+y\right)}{\left(x-y\right)^{2}}\times \frac{2x-x-y}{x+y}
Gwnewch y gwaith lluosi yn 2x-\left(x+y\right).
\frac{x\left(x+y\right)}{\left(x-y\right)^{2}}\times \frac{x-y}{x+y}
Cyfuno termau tebyg yn 2x-x-y.
\frac{x\left(x+y\right)\left(x-y\right)}{\left(x-y\right)^{2}\left(x+y\right)}
Lluoswch \frac{x\left(x+y\right)}{\left(x-y\right)^{2}} â \frac{x-y}{x+y} drwy luosi'r rhifiadur â’r rhifiadur a'r enwadur â’r enwadur.
\frac{x}{x-y}
Canslo \left(x+y\right)\left(x-y\right) yn y rhifiadur a'r enwadur.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}