Enrhifo
\frac{323}{4}-4\sqrt{15}\approx 65.258066615
Ehangu
\frac{323}{4} - 4 \sqrt{15} = 65.258066615
Rhannu
Copïo i clipfwrdd
\frac{1}{4}\left(\sqrt{3}\right)^{2}-4\sqrt{3}\sqrt{5}+16\left(\sqrt{5}\right)^{2}
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(\frac{1}{2}\sqrt{3}-4\sqrt{5}\right)^{2}.
\frac{1}{4}\times 3-4\sqrt{3}\sqrt{5}+16\left(\sqrt{5}\right)^{2}
Sgwâr \sqrt{3} yw 3.
\frac{3}{4}-4\sqrt{3}\sqrt{5}+16\left(\sqrt{5}\right)^{2}
Lluosi \frac{1}{4} a 3 i gael \frac{3}{4}.
\frac{3}{4}-4\sqrt{15}+16\left(\sqrt{5}\right)^{2}
I luosi \sqrt{3} a \sqrt{5}, dylid lluosi'r rhifau dan yr ail isradd.
\frac{3}{4}-4\sqrt{15}+16\times 5
Sgwâr \sqrt{5} yw 5.
\frac{3}{4}-4\sqrt{15}+80
Lluosi 16 a 5 i gael 80.
\frac{323}{4}-4\sqrt{15}
Adio \frac{3}{4} a 80 i gael \frac{323}{4}.
\frac{1}{4}\left(\sqrt{3}\right)^{2}-4\sqrt{3}\sqrt{5}+16\left(\sqrt{5}\right)^{2}
Defnyddio'r theorem binomaidd \left(a-b\right)^{2}=a^{2}-2ab+b^{2} i ehangu'r \left(\frac{1}{2}\sqrt{3}-4\sqrt{5}\right)^{2}.
\frac{1}{4}\times 3-4\sqrt{3}\sqrt{5}+16\left(\sqrt{5}\right)^{2}
Sgwâr \sqrt{3} yw 3.
\frac{3}{4}-4\sqrt{3}\sqrt{5}+16\left(\sqrt{5}\right)^{2}
Lluosi \frac{1}{4} a 3 i gael \frac{3}{4}.
\frac{3}{4}-4\sqrt{15}+16\left(\sqrt{5}\right)^{2}
I luosi \sqrt{3} a \sqrt{5}, dylid lluosi'r rhifau dan yr ail isradd.
\frac{3}{4}-4\sqrt{15}+16\times 5
Sgwâr \sqrt{5} yw 5.
\frac{3}{4}-4\sqrt{15}+80
Lluosi 16 a 5 i gael 80.
\frac{323}{4}-4\sqrt{15}
Adio \frac{3}{4} a 80 i gael \frac{323}{4}.
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}