Neidio i'r prif gynnwys
Enrhifo
Tick mark Image
Gwahaniaethu w.r.t. r
Tick mark Image

Problemau tebyg o chwiliad gwe

Rhannu

\frac{\left(-r^{4}\right)^{\frac{2}{3}}}{\left(64r^{7}\right)^{\frac{2}{3}}}
I godi \frac{-r^{4}}{64r^{7}} i bŵer, codwch y rhifiadur a'r enwadur i bŵer ac yna rhannwch nhw.
\frac{\left(-r^{4}\right)^{\frac{2}{3}}}{64^{\frac{2}{3}}\left(r^{7}\right)^{\frac{2}{3}}}
Ehangu \left(64r^{7}\right)^{\frac{2}{3}}.
\frac{\left(-r^{4}\right)^{\frac{2}{3}}}{64^{\frac{2}{3}}r^{\frac{14}{3}}}
I godi pŵer rhif i bŵer arall, lluoswch yr esbonyddion. Lluoswch 7 a \frac{2}{3} i gael \frac{14}{3}.
\frac{\left(-r^{4}\right)^{\frac{2}{3}}}{16r^{\frac{14}{3}}}
Cyfrifo 64 i bŵer \frac{2}{3} a chael 16.
\frac{\left(-1\right)^{\frac{2}{3}}\left(r^{4}\right)^{\frac{2}{3}}}{16r^{\frac{14}{3}}}
Ehangu \left(-r^{4}\right)^{\frac{2}{3}}.
\frac{\left(-1\right)^{\frac{2}{3}}r^{\frac{8}{3}}}{16r^{\frac{14}{3}}}
I godi pŵer rhif i bŵer arall, lluoswch yr esbonyddion. Lluoswch 4 a \frac{2}{3} i gael \frac{8}{3}.
\frac{1r^{\frac{8}{3}}}{16r^{\frac{14}{3}}}
Cyfrifo -1 i bŵer \frac{2}{3} a chael 1.
\frac{1}{16r^{2}}
Canslo r^{\frac{8}{3}} yn y rhifiadur a'r enwadur.
\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{\frac{2}{3}-1}\frac{\mathrm{d}}{\mathrm{d}r}(\frac{-r^{4}}{64r^{7}})
Os yw F yn gyfansoddiad dwy ffwythiant y mae modd eu gwahaniaethu f\left(u\right) a u=g\left(x\right), hynny yw, os yw F\left(x\right)=f\left(g\left(x\right)\right), yna deilliad F yw deilliad o f mewn cysylltiad â u wedi’i luosi â deilliad g mewn cysylltiad â x, hynny yw\frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{\frac{2}{3}-1}\left(64r^{7}\frac{\mathrm{d}}{\mathrm{d}r}(-r^{4})-\left(-r^{4}\frac{\mathrm{d}}{\mathrm{d}r}(64r^{7})\right)\right)}{\left(64r^{7}\right)^{2}}
Ar gyfer unrhyw ddau ffwythiant y mae modd eu gwahaniaethu, deilliad cyniferydd dau ffwythiant yw’r enwadur wedi’i luosi â deilliad yr enwadur wedi’i dynnu o’r rhifiadur wedi’i luosi â deilliad yr enwadur, y cwbl wedi’i rannu â’r enwadur wedi'i sgwario.
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{\frac{2}{3}-1}\left(64r^{7}\times 4\left(-1\right)r^{4-1}-\left(-r^{4}\times 7\times 64r^{7-1}\right)\right)}{\left(64r^{7}\right)^{2}}
Deilliad polynomaial yw swm deilliadau ei dermau. Deilliad term cyson yw 0. Y deilliad o ax^{n} yw nax^{n-1}.
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{-\frac{1}{3}}\left(-256r^{7}r^{3}-\left(-r^{4}\times 7\times 64r^{7-1}\right)\right)}{\left(64r^{7}\right)^{2}}
Lluoswch 64r^{7} â 4\left(-1\right)r^{4-1}.
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{-\frac{1}{3}}\left(-256r^{10}-\left(-448r^{4}r^{6}\right)\right)}{\left(64r^{7}\right)^{2}}
Lluoswch -r^{4} â 7\times 64r^{7-1}.
\frac{\frac{2}{3}\times \left(\frac{-r^{4}}{64r^{7}}\right)^{-\frac{1}{3}}\left(-256r^{10}-\left(-448r^{10}\right)\right)}{\left(64r^{7}\right)^{2}}
Symleiddio.