Datrys ar gyfer α (complex solution)
\alpha =\beta +\frac{i\sqrt{2x-10}}{2x}
\alpha =\beta -\frac{i\sqrt{2x-10}}{2x}\text{, }x\neq 0
Datrys ar gyfer x
\left\{\begin{matrix}x=\frac{\sqrt{40\alpha ^{2}-80\alpha \beta +40\beta ^{2}+1}-1}{4\left(\alpha -\beta \right)^{2}}\text{; }x=-\frac{\sqrt{40\alpha ^{2}-80\alpha \beta +40\beta ^{2}+1}+1}{4\left(\alpha -\beta \right)^{2}}\text{, }&\alpha \neq \beta \\x=5\text{, }&\alpha =\beta \end{matrix}\right.
Datrys ar gyfer α
\alpha =\beta -\frac{\sqrt{10-2x}}{2|x|}
\alpha =\beta +\frac{\sqrt{10-2x}}{2|x|}\text{, }x\neq 0\text{ and }x\leq 5
Graff
Rhannu
Copïo i clipfwrdd
Enghreifftiau
Hafaliad cwadratig
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometreg
4 \sin \theta \cos \theta = 2 \sin \theta
Hafaliad llinol
y = 3x + 4
Rhifyddeg
699 * 533
Matrics
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Hafaliad ar y pryd
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Gwahaniaethu
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integreiddiad
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Terfynau
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}